Jun 182014
 

My approach to the restoration has been to keep things as standard and drive the car for a while, before making any modifications. The two main areas that I have deviated from this are; fitting an EDIS Megajolt electronic ignition system and using the Mangoletsi cable throttle linkage.

The standard throttle has an inherent amount of free play due to the numerous joints in the linkage. The decision to fit the Mangoletsi throttle was aimed at improving the throttle response by removing this play and was based on the views of numerous forum members. My slight reservation was the appearance of the cables within the engine bay, as they arc from the pedal housing to the inlet manifold.


Mangoletsi cable throttle kit

The kit was ordered from SNG Barratt before the engine had been installed in the car which made the initial fitting of the components much easier! Although the completed inlet manifold and carburettors would be removed as a completed unit to fit the engine from underneath.

The kits are very well made and came in four clearly marked bags, and with detailed instructions. Most of the components are already fully assembled and pre-set so the installation is very straightforward.

The system uses twins cables to balance the load on the levers, providing a smoother operation, and the cables were the only components that would have to wait until the engine was in situ.

The first bag contained a linkage plate and gaskets which simply fits between the carburettors and the inlet manifold. The gaskets used are thinner than standard to compensate for the added thickness of the plate. The carburettors are re-fitted and then the kit’s spring carrier bracket is attached to the linkage plate. Pre-fitted to the bracket are the adjustable outer cable abutments which would be adjusted during the final set up.

Thinner gaskets are used Carburettor linkage plate

The carburettor’s standard SU throttle levers are replaced with ‘aircraft standard’ rose jointed levers, which have a quality feel to them, with a smooth and precise operation and no free play. The top rose joints are bolted to their respective levers on the shaft of the linkage plate. The only slightly fiddly part of the installation was synchronising the operation of the three carburettors. Although this was adequately covered in the instructions.

The kit’s spring carrier Hex adjustment for rose jointed tie rod

A jig plate is used to lock the linkage to a datum position to fit the rear rose joint tie rod, which has been pre-set to a length of 21mm. The front and centre tie rods are then fitted in turn and their lengths adjusted so the brass throttle plates all close at the same time.

An entirely new pedal housing is also included which allows the pedal position and length of travel to be adjusted to suit. Although it has been left at the pre-set 40mm of travel for now. Any fine adjustments will have to wait until the car is completed.

I should have been expecting it …. I then hit a major snag. It was all going far too well up to that point!!

When the pedal was depressed, the top of the pedal lever fouled the starter relay mounted on the bulkhead. I thought the relay may have been incorrectly mounted but old photos confirmed the relay was in the correct position. The new pedal housing was the problem!

Even mounting the relay on the wrong side of the bracket didn’t solve the problem. In fact it made it worse! The lever now just hit the relay bracket instead but also, it was then impossible to connect the wires to the relay. The reservoir bottles were in the way!

Early photo confirms correct position Relay mounted the wrong side But now the accelerator
just hit the bracket

In the end I contacted John Mangoletsi to find out why I was having problems fitting it. He was most helpful and was unaware of this issue, as it had not be reported to them before. A different kit is produced for 3.8 and 4.2 models and each has to be compatible with all the in-flight changes that Jaguar made at the factory.

It soon dawned on me that the relay position had changed right at the end of the S2 production run, as I found out when my wiring puzzle was solved. The relay moved to the engine bay bulkhead with the introduction of the ballast resistor. An additional relay loom was also added to wire in the relay in its new position. A loom that took ages to track down.

John Mangoletsi indicated that the kits were specifically designed to fit all the models and were sold as such. He kindly offered to visit to see the issue in person and come up with a revised solution for mounting the relay. One that could then be offered for the (few) cars which had a ballast resistor.


Starter relay relocated to its
original pre-Ballast resistor
position under the A-post

At this stage I realised I was being a bit dim! I already had the solution: the other change I was making was the EDIS Megajolt ignition system which removed the need for a coil and therefore the ballast resistor.

I could simply move the relay back to its original position on the bulkhead underneath the A-post and do away with the additional relay loom completely. Problem solved!

The final tasks were to connect up the cables once the engine was in place and tidy up the empty bulhead holes for the original linkage. I chose to fit socket head button screws rather than blanking grommets.

In summary, the Mangoletsi throttle cable linkage is a quality bit of kit and could probably be installed in a day or a lazy weekend. I will have to make a point of driving a standard car so I can feel the difference to make sure it was worth it!

Jun 152014
 

Before the headlights can be fitted, the bonnet electrics need to be completed while there’s still access.

The addition of headlamp relays had been made and so all that remained was to run the bonnet loom from the 10-way connector mounted behind the LH headlamp ‘sugar scoop’ to a 5-way connector behind the RH ‘sugar scoop’.

A small square bracket should secure the 5-way connector and is located on two studs welded to the bonnet. However the stud centre-to-centre spacing was 3/16″ wider than that of the bracket and the holes in the bracket were too small. Yet more cursing of repro parts!

My initial thought was the bracket was incorrect but that wasn’t the case. The problem was the stud spacing on the bonnet manufactured by the Jaguar Daimler Heritage Trust. It’s a bit worrying if they can’t even get their own bonnets right!

So the fitting of the front indicators and headlamps was delayed until I was able to fabricate a new bracket.

In the meantime I set about the relatively simple task of building up the headlamps in the sugar scoops. The original bowls were on the cusp of being salvageable but, for the relatively small cost, I opted to fit new ones. The first two sets of bowls supplied by SNG Barratt were wrong – the first didn’t have a spring attachment and the holes in the second didn’t align with the holes in the scoops. How hard can this be?

The third set didn’t fit either but the ‘only’ differences appeared to be additional brass fittings on the rim of the bowl and a slightly different location of the lug for the retaining spring. Enough was enough, I decided to use these bowls and removed the offending brass attachments with a Dremel.

(Once the parts are correct) There isn’t anything difficult fitting the headlamp components and everything is self-explanatory.

Spire nuts fitted to secure the bowls Then the rubber gasket Orientation of headlamp bowl

With the bowls in place, the headlight seating rim can be fitted. The rim is attached to the bowl by a retaining spring and two trimming screws. As their name suggests, the latter are adjusted to alter the headlight alignment; one vertically and the other horizontally.

Note: the photos below were taken before I’d realised the bowl, and therefore the adjustable seating rim, needed to be rotated anticlockwise by 90 degrees. The trimming screw to adjust the horizontal alignment needs to be on the offside of each lamp for right hand drive cars.

Next the headlamp seating rim Headlight alignment adjusting screw

Kits containing all the components used for the headlamps alignment are available. However the lugs in the new bowls, to attach the spring, were right at the base of the bowl and noticeably shorter. The replacement spring would not reach the headlamp seating rim. Therefore progressively longer springs had to be tried until one fitted sufficiently well and with enough oomph to handle the likely forces due to the weight of the headlamp.

Standard short spring The numerous springs tested
Finally one fitted! Almost there ….

It is then simply a matter of connecting the lamp and securing it with the retaining ring. Protrusions on the circumference of the headlamp align with depressions in the seating rim ensure the headlamp will always be orientated correctly.

All the electrical connections within the bonnet were given yet another final connectivity check (paranoia – moi?!?) as there’s no access once the sugar scoops are in place. The bullet connectors were also treated to a good coating of Vaseline to help delay any corrosion.

Fixing the sugar scoops
The sugar scoops are fixed to the bonnet by special rivets, which are essentially a standard rivet with an aluminium cup under the head. The cups provide a method for mounting chrome finishing beading, which clips on to the cups to improve the aesthetics by hiding the rivet heads.

A spacer washer is also fitted under each of the rivet heads to raise the cup away from the bodywork to allow a rubber strip to sit under the chrome finishing beading.

Originally a single washer was used although others on the E-Type forum have reported needing two washers to get the trim to attach. I guess this will just depend on the relative thickness of the replacement washers and rubber strip.

They also confirmed that the rubber strip originally had holes punched into it, which allows the rivets and spacer washers pass through it in order to sit flush against the bodywork. I had incorrectly assumed the rubber strip also formed part of the rivet ‘sandwich’.

Another suggestion was to Waxoyl all the mating surfaces prior to riveting. I still needed to Waxoyl the bonnet gaps along the front wings before fitting the fitting the chrome beading. So I decided to get this messy job out of the way in one hit and, while I was there, give the areas behind the sugar scoops another thick coating for good measure!

Waxoyling the bonnet-wing gap Rears of sugar scoops 2nd coating for enclosed area

The bonnet gaps for the beading were taped above and below in a futile attempt to avoid a major clean up afterwards. This time the Waxoyl container was sat in a bath of boiling water so it became more a job of pouring on rather than brushing on! The bonnet gaps are now well and truly filled with Waxoyl. Although I might come to regret this if (read when!) it starts to melt due to the heat of the engine!

Position of 5-way connector bracket Masking fit for a rivet!

The paintwork surrounding the sugar scoop area was given the usual riveting protection, a few layers of 3M masking tape, to avoid any damage when the pin snaps off. My plan was initially to use one washer under the rivet heads, as listed in the parts manual. If it was too difficult to fit the chrome finishers I’d have to drill out the rivets and re-do using a second washer. So additional rivets had been ordered just in case.

It was just as well spares had been ordered, as I was soon drilling out all the newly attached rivets to re-do it. Although not to fit additional spacers! I’d been on a riveting roll …. and had been a tad overzealous in their application. The clip to hide the joint between the two chrome finishing strips is held in place by a self-tapping screw. A self-tapping screw that requires a rivet sized hole … well, one that was now occupied by a rivet! What a clot!

Still blissfully unaware of my error! Eyebrow fitting needs the bowl out Dooh! ….a rivet too far!

I only noticed my error as I was standing back admiring how well I’d managed to get the rubber and chrome strips to fit. To make matters worse, somehow the offending rivet had ballooned on both sides of the body panel and couldn’t be pushed through. It required the whole scoop to be removed to sort it out.

Soon after, I also realised that I’d been a bit premature fitting the headlamp bowls and fittings. The front of the chrome ‘eyebrow’ is fixed directly to the scoop by two self-tappers, behind the headlamp bowl and rubber gasket. As it was a new bonnet, the holes for the screws hadn’t been drilled and so all the lamp fittings had to be removed to gain access.

Let’s have another go! Punching holes in the rubber strip

The scoop was re-riveted to the bonnet for round 2! The single piece rubber strip runs around the edge of the scoop with its ends tucking under the ‘eyebrow’. The holes for the rivets had been created by using a length of stainless steel pipe with a diameter marginally larger than the spacer washer. The thickness of the end wall was ground down to create a sharper edge so it could be used as a punch.

The original rubber strips were shaped so there were different part numbers for each scoop. Unfortunately the replacement rubber comes in straight lengths so it tends to ruffle up as it’s positioned around the curvature of the scoop. It’s not much of an issue apart from around the tip of the scoop, where the curvature is tightest. A heat gun helped to persuade it into shape but I cheated by cutting out a small wedge on the inside edge where a hole had been punched and superglued it back together.

I’m sure there are many methods to fit the bonnet chrome but the one that worked for me was:

  • Position the ‘eyebrow’ until it is almost fully home (around 1cm proud of the front wing joint)
  • Hook the rubber strip over the rivet heads and feed under the ‘eyebrow’
  • Slide, rather than clip, the chrome beading onto the 2nd from top rivet head
  • Keep sliding it up on to the top rivet head and then on, until its end is just under the eyebrow. The rubber strip protects the paintwork but care was needed to ensure, if it did suddenly come off the rivet head, it wouldn’t gouge into the paintwork!
  • For the remaining rivet heads: the beading has sufficient flex to allow it to be twisted so it fits fully over one side of the rivet head, before pressing it until it clips over the other side
  • The front of the eyebrow could then be pressed down firmly to spot the correct positions for fitting the self tappers.
Slight ruffling wasn’t an issue But surgery was needed around the tip Re-chroming had distorted the beading

My intention was to fit the long bonnet beading with about 3/4″ extending under the end of the eyebrows. Obviously this required the beading to be fitted before the completion of the headlamps. The only issue was ensuring the brass clips to secure it were positioned away from the bolts clamping the wings to the centre bonnet panel. The gap between the bonnet panels had to be ease open for some of the clips to allow them to slide through.

Easing apart the beading
gap from below
Pressing the beading home
… v carefully!
Rod inserted into beading
to stop it lifting
Fitting the bonnet beading: access from below was needed to ease apart the flanges of the centre bonnet section and the front wing

However extending the beading stopped the eyebrow from being pushed flush against the bonnet. In the end I settled for a butt joint and cut off the extra 3/4″ but adopted another suggestion from the forum: slide a 2-3″ length of small rod into the centre of the beading, leaving of half its length protruding. This engages under the end of the eyebrow but doesn’t stop it being pressed against the bodywork. The rod should stop the end of the bonnet beading being caught and bend out of shape.

Fitting the scoops was a really fiddly job as I’d expected and, with the various problems encountered, took almost an entire weekend to fit the first headlamp (which was the easier of the two!).

I’m still struggling with the second headlamp. The main problems were the dire positioning and alignment of the rivet holes in the scoop compared to the bonnet aperture and the angle of the flange on the scoop.

A shocking gap using the pre-drilled holes The marker pen shows the how far out they were
(and it’s the further of the two marker points!)

The front of the driver’s side scoop was 5-6mm away from the bonnet panel using the pre-drilled holes. A gap that couldn’t be closed by applying pressure as the underside of the scoop was hard against the bonnet aperture. The only solution was to drill a second set of holes. Also the flange angle down one side was such that it couldn’t fit flush against the bonnet panel. The knock on effect was the ‘special’ rivets weren’t long enough to reach through both panels and longer rivets had to be ordered.

The second headlamp was successfully riveted into position using the newly drilled holes. I was both pleased and relieved and had expected that that would be the end of my headlamp woes. Far from it! I couldn’t get the chrome beading trim on with just a single spacer washer. Reluctantly I decided to drill out rivets and start again using 2 washers per rivet.

Again the rivets wouldn’t push through once the head had been drilled off. They felt as though they were embedding themselves into the lower panel.

The headlamp was subsequently re-attached using 2 spacers washers under the head AND a washer under the rear. This was to give the blind part of the rivet something firm to compress against so, fingers crossed, they’ll be easier to drill out in future!

The problem wasn’t the number of spacer washers but the shape of the beading trim. I’m certain they had been distorted during the re-chroming as polishing puts a fair amount of heat into quite thin material. It’s not easy to fettle their shape to fit once the chrome plating is on. They can be rotationally flexed but not re-bent to match the scoop contours.

The chrome beading fitted poorly with noticeable gaps caused by forcing the beading to clip onto some of the rivet heads. In fact the addition of two spacers made these gaps worse, allowing the rubber strip to move underneath. This time I’d spent a further weekend ‘not fitting a headlamp’! Rather disheartened, I’ve given up for now and will have another stab once my enthusiasm is restored!

At least one headlamp is in!

One they are completed, it will be a job I hope not to have to repeat and I’m now questioning the wisdom of the positioning of the inline fuses for the headlamp relay modification!