Jan 132015
 

Jaguar made several changes to the clutch slave cylinder during the production of the E-Type which appear to have caused a fair amount of confusion amongst owners, myself included.

The slave cylinder details from the Jaguar literature are:

  • S1 to engine 7E4606 – short 80mm adjustable cylinder (part C21470)
  • S1 from engine 7E4607 – 95mm hydrostatic self-adjusting cylinder (part C24145)
  • S1 from engine 7E18356 (7E55558 for 2+2) – reverted to adjustable cylinder (part C29801)

The difference being the adjustable cylinders require a return spring and bracket to pull the fork back, so the piston is at the mid-point. The hydrostatic, self-adjusting cylinders must not have the return spring fitted. Either type can be fitted to any of the range, so you just need to know which type is fitted to determine whether to fit a return spring.

As a result, the length of the slave cylinder is often used to differentiate between the two types. A 95mm unit was supplied when I ordered a replacement C29801 cylinder and the suppliers assured me it was correct.

I made the assumption, from all the forum discussions on the subject, that I must have a hydrostatic unit and therefore didn’t include the return spring when it was fitted it to the transmission, prior to installing the engine.

It wasn’t until another S2 owner who was going through the same issue was able to confirm the 2nd version of the non-hydrostatic cylinders was 95mm, not 80mm, with the original Lockheed part having markings 3232 648C. This matched the markings on my replacement cylinder and also on the one that had been removed during the dismantling, which was fitted with a spring.

My conclusion was that the return spring will need to be fitted after all. Another recommendation was to replace the mounting stud by 5/8″ UNC x 1″ socket head bolts. This will make later removal easier as access is severely restricted.

So another task to add to the ‘To Do’ list!

Reuniting the engine and gearbox

 Rolling Chassis, Transmission  Comments Off on Reuniting the engine and gearbox
Jul 082013
 

My aim is to spend a long weekend in August (with the wishful thinking that it’ll be sunny!) to transform it from a bodyshell into a rolling chassis; installing the fuel system, rear suspension, engine/gearbox & ancillaries, front suspension and steering all in one hit. So I’ve got my work cut out to get everything ready in time.

The bonnet and front sub-frame need to be removed in order to fit the tiny radiator support brackets so I’m also going to remove the picture frame at the same time. It should then be possible to roll the engine and gearbox unit into place through the gap and avoid the hassles of installing the engine either from above or below.

The gap between the lobes at the lower front edge of the engine frames is only 22cm. However, if the water pump is removed, the engine is slightly narrower than this just below the height of the inlet manifold. The engine has been rebuilt by VSE with a new clutch fitted so I just had to attach the gearbox and bellhousing. However the reuniting of the transmission unit would feel like a major milestone had been reached!

The bellhousing had already been ultrasonically cleaned and just needed the rear oil seal inserted before being bolted to the gearbox. Three lock tabs are used to prevent six of the bolts from working loose. The remaining two bolts, next to the clutch fork, use safety wire instead.

I’d never needed to use locking wire on previous vehicles so needed to purchase a pair of safety wire pliers. Eventually I managed to obtain an old pair on eBay and some 0.81mm stainless wire.

The pliers were definitely a good investment, less so was the wire that I purchased. It snapped as soon as a few twists were applied. I hadn’t purchased annealed wire – dooh! After purchasing the correct type, it was a lot more successful! The main point is to make sure the wire passing round the outside of the bolt head puts tension on the bolt in a clockwise direction.

The fitting of the clutch release bearing and operating fork is all very straight forward. The fork can be inserted with the bearing attached which makes fitting the securing spring clips much easier. The clips are held in place by the curved end sitting in a slight dimple in the fork arm.

The push-fit spring clips secure the clutch release bearing to the operating fork. The curved spring end sits in a dimple in the fork

The pivot pin was lightly greased and aligned with the grub screw hole in the fork before inserting

A little Loctite was used on the grub screw which locks the pivot pin in position. A lock nut is then fitted on the grub screw.

The engine was already sitting on the DIY trolley which will be used to roll it into position once the front frames are removed. Hoisting the gearbox to the same level meant it was simply a matter of rotating it to align the drive splines. Once the splines were engaged the gearbox could be rotated back again to align the bolt holes.

Supporting the gearbox with the engine hoist made the job much easier

It was also very helpful to have the engine mobile to align the two units

The weight of the gearbox was used to help push the gearbox onto the clutch splines

The two bellhousing support brackets needed to be installed before the full weight of the gearbox could be released. Finally the flywheel cover plate was bolted on to finish the job.

I did make the mistake of fitting the clutch slave cylinder when fitting the bellhousing to the gearbox but had to remove it to fit the lower bolt for the support bracket. I’ll make the final adjustments of the clutch just before the engine is installed.

One thing I’m not sure about at this stage is the orientation of the four vertical bolts for the support brackets. One of the bolts is longer than the others and so I guess must be used to secure a bracket of some description. Another question for the E-type forum ….

Fitment of the bellhousing support bracket is needed before it can take the full weight of the gearbox

A major milestone reached - a completed transmission unit ready to fit. I hope it starts!!

The rear of the gearbox has a sprung fitting to absorb vertical movement

The gearbox is supported at the rear by a large spring between a mounting bracket and the gearbox. The spring damps the movement of the gearbox but allows for a degree of vertical travel. The spring ends sit in rubber mouldings. The mounting bracket also contains a rubber bump stop to limit the gearbox travel.

May 192013
 

While researching the best piping to use for the hydraulics, I’d found out that copper piping is banned in many countries as it is susceptible to work hardening over time. I thought it wise to switch to Cunifer pipes as it is a safety issue, even though I had already purchased a copper pipe kit from Automec.

In the end I took the cautious approach to all the braking system and planned to have the master cylinder and servo units professionally renovated. The main reason being an inspection of the master cylinder had revealed some pitting and I wasn’t confident it would be possible to get a good seal without it being re-sleeved.

Also the fixing studs on the servo unit were all at odd angles so something was amiss. Opening up the servo uncovered a bodged weld ‘repair’ to one of the studs. The servo casing looked as if it had been fractured around the stud and so would need replacing. The units were sent off to J & L Spares to be repaired. However the cost of repairing the master cylinder was more than the cost of a new one so I opted for the latter.

Servo Mounting Studs Bodged repair weld Renovated Servo

The mounting studs for the brake servo were all at odd angles, suggesting all was not well

One of the studs appears to have been bent resulting in a fracture around the stud, whic had been poorly 'repaired'

A renovated servo unit from J & L Spares

Apart from a basic understanding, I’d never really paid much attention to the detailed workings of servo assisted brake systems. So it was out with the Jaguar service manuals to get a better understanding of how the vacuum boost is controlled. It should help if troubleshooting is required later on, especially as I will be tapping into the vacuum circuit for the EDIS Megajolt control module.

It’s actually quite simple. A reservoir tank stores a ‘vacuum’ by being connected to the inlet manifold, which is at a lower pressure than the ambient air pressure. This is then used to boost the braking force when the brake pedal is pressed.

The servo unit contains to volume chambers which are both connected to the vacuum reservoir but separated by a diaphragm. The servo hydraulic piston is operated by fluid forced from the master cylinder but also by a spindle attached to the centre of the diaphragm.

At rest when no braking force is applied, there is no flow of hydraulic fluid and both chambers are at equal pressure and so no force is exerted on the piston.

However when the brake is applied, the master cylinder piston is pushed down the bore forcing fluid from the master cylinder to the servo unit. This operates the servo hydraulic plunger. Near the end of the travel of the master cylinder piston, it operates a reaction valve.

The reaction valve first disconnects the servo’s rear chamber from the vacuum supply and then opens the rear chamber to atmospheric pressure. This creates a pressure difference between the front and rear chambers, which forces the diaphragm and attached spindle forward. Thus increasing the force applied to the servo hydraulic piston.

Once these were installed on the car, it was time for the fabrication of the hydraulic piping ….

The brass fittings were salvaged from the Automec kit and the copper piping used for making mock-ups of the more complex sections. Cunifer piping is typically sold in 25 foot coils which was more than enough. So I had plenty spare ‘just in case’ I made a hash of making the individual pipes.

I now needed to straighten the replacement Cunifer piping and also to obtain a brake flaring tool. Initially I purchased a flarer from Machine Mart which was little short of useless and had the typical Made in China quality about it. I ought to know better by now!

There’s always a number of old, quality flaring tools on eBay but these usually change hands for well in excess of £100. I think people just resell them back on eBay once they’ve finished their restorations, which is what I planned to do. However after being outbid on numerous times I gave up as I needed to press on.

The Oakes brake flaring tool purchased from Automec was well worth the investmentAfter a recommendation, I picked up a new Oakes tool from Automec at the Jaguar Spares Day for a show price of £90. Quite a bit for a tool for a one off job but it does produce good, consistent flares every time. All in all, a good investment and a quality tool.

I’d previously straightened all the copper piping over a form (covered in a previous post) but subsequently disposed of the wooden form, thinking I’d no longer need it!

I did come across a straightening tool produced by a company called Kwix UK which seemed promising. However it only straightens a pipe of a fixed diameter so I’d need three tools for each of the pipe diameters used for the brake and fuel lines.

One to avoid - the Kwix UK pipe straightener - it could be a good product but really let down by their customer serviceThe 1/4″ brake pipes linking the master cylinder and servo run around the engine frames. I thought any slight bends/kinks in these pipes would be more noticeable as they run along the straight edges of the frames. The 1/4″ tool was purchased as a trial and it worked well so I got the 5/16″ one for the fuel lines.

Unfortunately this time, the pipe passed straight through without a hint of straightening and emails to the company received no response. I think they probably just sent the wrong sized tool but couldn’t be bothered with addressing customers’ issues so I won’t be dealing with them again!

The difficulty with bending the pipes was that often it wasn’t possible to trial fit the pipe after each bend was made. The unbent length would usually foul some part of the bodywork, stopping the pipe being placed in situ to mark the exact point for the next bend.

There was little margin for error for pipes that had to be bent in different planes. It only takes slight errors in the position of the bend, the angle of the bend or the plane in which the bend is made for it not to fit and the errors are magnified once another bend or two is added.

The clutch and rear brake piping, although the photos don't quite capture the various bends in numerous different planesThe mantra measure twice cut once applied here as, once bent, it’s almost impossible to re-straighten a pipe, especially the larger diameter piping. In fact it was more like measure 10 times, bend once! I probably had to discard just under half of my first attempts.

Having completed the hydraulics, I’m not convinced of the wisdom of purchasing kits as it would be nigh on impossible to get all the pipes right first time. So I’m glad I decided to fabricate my own pipes and it was quite therapeutic.

Having said that, I still managed a few numpty moments. A couple of times I allowed the brass fitting to slide away from the flared end onto the wrong side of where the bend was then made. Another scrapped length of piping!

The copper kit didn’t go completely to waste as it was cut down into shorter lengths and used to get correct position, angle and plane for a small section with say 2 or 3 bends. This could then be offered up without fouling the bodywork before making the same bends in the full length of pipe.

I had all but a few of the original pipes to use as templates however I did deviate in a couple of areas:

  • The pipe to the rear runs along the under floor box section but divert so it is clear of the mounting bolts for the torsion bar reaction plate. In doing so I think the pipe would be more exposed to damage. I continued running along the box section and will just need to take care when doing up the torsion plate bolts.
  • I thought it looked neater having straight piping around the front of the engine frames rather than trying to get them to mirror all the rises and falls in the frame profile. Therefore, just before the front brake union, the smaller front brake pipe jumps over the larger pipe rather than underneath.

Also my pipe bender couldn’t get as tight ‘U’ bends from the brake and clutch master cylinders and other methods were prone to causing the pipe to start collapsing.

Hydraulic Pipe Routing
Below are a few photos of the trial fitting of the various hydraulic pipes on the S2.

Clutch from Master Cylinder Clutch low pressure pipe

The routing of the clutch piping from the master cylinder to the flexible hose union. Note - not fitted at this stage is the P-clip on the LH frame bolt, securing the pipe

The clutch low pressure hose has a tight U-bend before running parallel with the engine frame

Brake – Master to Servo Brake – around Picture Frame Brake – Master to Servo & To Front

The brake pipe from the master cylinder to the servo unit also has an initial tight U-bend before running down the diagonal, round engine frame

The pipe then routes around the bottom of the picture frame to an inline union

From the union, the pipe travels up the opposite side frame member to the servo unit.

Front feed over Master to Servo Left Front Brake Righr Front Brake

The feed fro mthe servo to the front brakes first passes underneath the thicker master to servo pipe and then over it to the front union

The left brake pipe from the front union

The right brake pipe from the front union

Servo to Rear Union Union to Rear A few off cuts!!

The path of the pipe for the rear brakes from the servo to an inline union, which includes the brake light hydraulic switch

From the brake light switch union, the rear pipe passed down the LHS of the underside of the car

The fitting of the clutch and brake pipes was definitely a case of practice makes perfect - a few off cuts!

Jan 232013
 

The brake reservoir caps house electrical connections for the float operated switch for the brake fluid warning light and appeared to be quite corroded. It was only once they had been opened that it became clear that what I thought was corrosion was probably crystallised hydraulic fluid.

Both the reservoir caps appeared to be corroded but it was actually crystalised hydraulic fluid This was most of the contents of the first reservoir! The second reservoir was not much better!

The float should be enclosed in an aluminium cylinder but most of this had corroded away. I had little option but to replace the reservoirs which was a shame. Replacements are readily available however an alarming number of people had reported problems with them splitting and the resulting leak causing havoc with the paint work.

Reading other people’s woes with the repro products, I think the splitting might be initiated either when the black low pressure rubber tubing is pushed on, as a reasonable amount of force is required, or by over-tightening the hose clamps. Basically the new parts are not particularly good quality and no doubt originate from China.

The original bottles had a metal insert inside the supply protrusion/outlet which would avoid the over-tightening issue. The insert also had a gauze nylon filter, again missing from the new ones.

The clutch reservoir was better as the fluid hadn’t crystalised, which I’m now thinking might be caused as the aluminium float shroud corrodes. However there was a lot of gunk at the bottom so I thought it wise to replace as well.

Reservoir cut open to retrieve the metal insert

I decided to salvage the metal inserts by cutting the bottles in half. These were zinc-nickel plated along with the bracket clamps before being inserted into the new bottles. The method I use to insert them was to pass a piece of string through the supply outlet to act as a guide.

A rod was then used to carefully push the insert home while supporting the other side to minimise the stress on the plastic bottle. The reverse was done when pushing on the low pressure rubber tubing, opposing the pressure with the same rod. Hopefully it will be ok.

I couldn’t work out a method of refitting the nylon gauze filter on to the metal insert once it was in place. The filters were not in the best of shape so they have been omitted.

Brake and Clutch reservoirs reunited with re-plated bracket Brake Servo reservoir showing the aluminium shroud around the float

However this does lead on to my next dilemma. As the calipers have been reconditioned and the reservoirs and hydraulic pipes replaced, I have the opportunity to switch from DOT4 to silicone brake fluid.

I like the idea of using the silicone fluid to avoid potential future problems with leaks damaging the paint work, especially in light of the problems others have had with the new reservoir bottles. Conversely there are views that the rubber seals can be damaged over the long term by the silicone.

It seems there isn’t a general consensus on which is the best way to go and it’s difficult determining whether advice is based on fact or merely that the person went down that route themselves and therefore it must be the right choice! Hmmmmm ……

Apr 242012
 

I was surprised how rusty the clutch pedal and pedal springs were seeing it’s inside the car and underneath the aluminium pedalbox housing. I’m assuming this must have been as a result of condensation. Once it’s complete I’ll give the inside a covering of ACF50 to give it some protection. There’s nothing worth noting on the dismantling as the pedals simply rotate on a shaft through the pedalbox.

The pedalbox was renovated before I’d come across the company that ultrasonically cleans alloy components, so it was shotblasted and then coated with a lacquer product sold by Eastwood to stop surface oxidisation. The pedal arm, foot pads and springs were also shot blasted and then powder coated.

The rebuild was fiddly mainly because the pedal springs are quite strong so it’s difficult to align everything while pushing the shaft into position. The final washer had a tendency to drop out at the final moment! It made sense to cover the shaft and mating surfaces in plenty of grease.

I was surprised that the brake light switch is actually part of the hydraulic system, actuated by hydraulic pressure when the brake pedal is pressed. Some have reported problems with the response of this switch and have therefore either replaced it or supplemented it with a mechanical microswitch operated by the brake pedal.

While the car is apart and the looms are being put in place, it makes sense to install both a hydraulic switch and a microswitch in parallel, to build in redundancy. All it would require would be to fabricate a bracket to hold a microswitch in the pedalbox housing. I’ll do this as part of the final electric fitting when the lights are installed.