Sep 162013
 

The heater valve was another part that was difficult to remove, as the bulkhead heater pipe had seized solid into the valve body. I didn’t want to apply heat in case it damaged any internal rubber seals and so I tried to break the joint by rotating the valve body. All this achieved was to deform the pipe, which eventually had to be cut to remove the valve.

There were signs of weeping from the valve so I suspected an internal seal had started to deteriorate and it would need replacing. The valve consists of a pot metal valve body and a plated end cap. The body has protrusions around its circumference which interlock with corresponding hook shaped protrusions on the end cap and then a single rivet stops the end cap rotating relative to the valve body.

The rivet was drilled out and then it was fairly easy to split the valve in two by rotating the end cap. This revealed the cause of the weeping – a sprung rubber diaphragm, that is used to control the passage of water, had become furred up.

The deposits had compressed the rubber seal in several places so it no longer made a complete seal. The rubber had also hardened over time so wouldn’t spring back fully once the deposits had been removed.

Even after extensive internet searches, I haven’t been able to find a supplier that just supplies the internal rubber diaphragm. Unfortunately the options are very limited.

Either purchase a complete repro valve or a repair kit from an American site, which includes everything but the valve body. However the kit was considerably more expensive than the repro valve, so I went for the latter.

Overall the quality of the new valve was fine, only let down by the finish of the valve body casting. It wouldn’t make any difference to the operation of the valve but I would have preferred to keep the original body.

May 072013
 

Several weeks ago I’d dropped off a box full of parts, including the heater and vacuum pipes, at the local powder coaters. Rather timely, they were ready for collection just before the bank holiday and one with fair weather forecast to boot! A good chance to crack on.

Fortunately you can’t go wrong with the orientation of the heater pipes and the vacuum pipes are fairly obvious. One vacuum pipe is straight (V2 in the photos) and one has a slight kink (V1) to bypass an entry point in the bulkhead. The entry point was originally blanked off so I assume this must have been for air conditioning or a fitting for LHD cars.

The fitting sequence is also obvious, working from the bottom up: H1, V1, V2, H2 and finally H3. My three heater pipes were new so I’d had a trial fitting of all the pipes and the bulkhead flanges so I wasn’t expecting too many headaches.

I’d picked up three tips from the E-Type forum from others who had gone through the same process:

  • Insulate the heater pipes to stop unwanted heat within the bulkhead
  • Use tape around the flanges to protect the paint when riveting
  • Feed rope or cord through the pipe so, when pulled, it would force the pipe flanges hard against the inside face of the bulkhead

All seemed sensible advice so I purchased some dense foam, pipe insulation. The other issue I’d already found was that the shoulder of the rivet gun was too wide to get the mussel onto the rivet head.

I spent a while looking for alternative rivet guns before someone pointed out the obvious; grind down the side of the rivet gun to reduce the width. A few minutes on a bench grinder and I was all set.

The first of many headaches was that I’d decided to route the vacuum and wiring cable for the EDIS Megajolt ignition within the bulkhead void. So this had to be removed temporarily to provide enough space to work. As I’d previously waxoyled the bulkhead, the whole process was a very messy business!

The tip of feeding rope down the pipes was really helpful. I fed a long length of garden wire down the pipes and, in Heath Robinson fashion, tied the ends behind me. I could then lean back pulling the pipes against the bulkhead while having my hands free for riveting.

Even so, I still managed to miss out the pipe flange when I riveted one end of the first pipe. The exterior flange was securely fixed to the bulkhead while the pipe was free to move!

I ended up cursing the fact that I’d insulated the lower heater pipe. At least I probably should have used much thinner lagging. It made the fitting of the lower vacuum pipe so much harder and later the routing of the windscreen washer tubing.

Even though I’d trial fitted the pipes, when it came to actually fitting them, I had problems aligning the holes in the two flanges and the bulkhead for every single pipe. I’d passed a 3.2mm drill through each hole as the pipes had subsequently been powder coated but still there wasn’t enough tolerance.

I’m also glad I taped the surrounding area as the head of the rivet gun tends to jump off the rivet when the pin snaps. I’m sure I’d have had several chips without it. In fact the only touching up needed was to one of the flanges but this was more to do with the adhesion of the Hammerite to the zinc plating.

Initially I’d only ground down one side of the rivet gun mussel. This was fine for the right hand ends of the vacuum pipes but useless for the gun orientation needed for the left hand side. Rather than stop and grind down the gun, I had a numpty moment and decided to fit the other heater pipes above before returning to finish off the troublesome vacuum pipes.

The pipe insulation was causing issues fitting the left hand side of the lower vacuum pipe so I thought I’d have to remove it. With the heater pipes fitted above there’s was no chance of getting at the vacuum pipes. So I just had to struggle on and finally managed to rivet them in place.

If I had the misfortune to have to do this again I wouldn’t bother with the insulation on the lower heating pipe, I’d waxoyl after installation and only move on to the next pipe once the lower one is completed. At last the long running saga of the bulkhead heater and vacuum pipes was over!!!

Now I can get on fitting the bulkhead components …..

Update: I’ve since read on the E-Type forum that uninsulated heater pipes can deliver sufficient heat to soften the surrounding waxoyl so it becomes runny and can drip everywhere. Therefore it’s probably is wise to insulate the lower pipe after all.

Jan 292013
 

Even though the pipe end centres were 6mm too wide, there wasn’t sufficient flex in the pipe to ‘persuade’ it to go in. When I originally measured the centres distance of 22¾” (578mm), the accuracy of the measurement wasn’t helped by the fact that there wasn’t a clear line of sight between the holes on the bulkhead as the engine stabiliser bracket is in the way.

At least the fabricated pipe could now be used to obtain an exact spacing of the bulkhead holes. The pipe was cut in half, shortened and a dowel inserted. The two halves could then be adjusted on the dowel to fit the bulkhead. The correct centres distance was 3/32” shorter than my original measurement …. ooops!

A while later, the MkIII heater pipe was dropped off …. would it fit and would the saga be over?? As soon as I got back from the office I dashed into the garage to trial fit the new pipe. It was spot on, much to the relief of all concerned!

A mock up of the bulkhead was made in aluminium sheet to ensure everything would fit this time around

It was suggested to re-title the blog entry to ‘How my F1-engineer-mate made a bl00dy great meal of remaking a simple water pipe’. The irony is even that was too long for the blog title field! Anyway, the reason the first pipe didn’t fit was as much down to my inability to use a tape measure as it was in the fabrication.

The photo shows the difference in the bend radius between the two pipes. The tighter bend in the MkIII version means the pipe is perpendicular where it passes through the flange.

The heater pipes are one of the first items that need to be installed on a rebuild so I was looking forward to fitting them at last and cracking on with the rebuild.

I should have known better …. the collar on my rivet gun is too wide, so it fouls on the protruding pipe and can’t reach the rivet head! How can something a simple as a heating pipe cause so much grief?!?

Nov 112012
 

The lower heater pipe was damaged when it was removed from the bulkhead so it needed to be replaced. Unfortunately the suppliers don’t offer the individual pipes (what a surprise!) so I had to buy the complete set of three pipes.

This should have been the end of my woes but sadly it was far from it! While shifting the various parts in storage, some weighty items were put on top of the new pipes and the new lower pipe was bent beyond use. Another Tourettes moment!

At this point the going rate for new pipe sets, which are essentially only a few bits of bent copper pipe, was the best part of £70. Dick Turpin would have been proud of that robbery! So I ordered sufficient 1/2″ copper pipe to remake the offending pipe myself.

The problem I hadn’t envisaged was that my small pipe bender didn’t go up to 1/2″ pipes and my normal plumbing pipe bender couldn’t provide the necessary tight bend that was needed. Due to the lack of space in the bulkhead the bends in the lower pipe have a very tight radius. I was stumped!

I turned to a friend who works in motorsport to seek help. Fortunately he offered to have a pipe made up, however that was far from the end of the problems! I handed over the remnants of the bent replacement pipe, the new copper pipe and the dimensions.

The repro pipe which I'd stupidly bent the repro pipe beyond use and it's replacment

After a few emails confirming dimensions etc, the replacement pipe was ready for collection a few weeks later. It didn’t fit …. it was slightly too long.

What I’d failed to mention was the bent pipe I’d supplied as the ‘template’ wasn’t the original pipe and I’d not trial fitted it. Like most of the repro parts it looks ok on the surface. That is until you get round to fitting it! The bends in the repro part weren’t tight enough and the flanges had been brazed mid-bend. It would never have fitted and so using it as template to replicate the require bend wasn’t such a good idea! The replicated bend on the right shows the probelm.

Ideally the distance between the Pipe End centres (red) and the Flange centres (yellow) needs to be the same, or at least much closer than they were. The Flange centres distance is obviously set by the spacing between the two bulkhead holes, which are only just large enough to get the pipe ends through. If the Pipe Ends centres distance is greater by any more than 1-2mm then the ends will not fit through the bulkhead holes. Some leeway is available as the pipe can be flexed over its length.

The fitting issues were reported back so I needed to order some new copper piping for Pipe Version 2. I re-ordered the copper piping from the same supplier requesting the same order as before – 30″ of 1/2″ copper pipe. For some reason, only known to the ex-supplier, the pipe was delivered in three small pipes of 10″ as they price it per 25cm! Beyond belief!

I found another source of 1/2″ copper piping however they had a minimum order of 3 metres. Even so, it was still cheaper than 30″ lengths from ‘craft’ retailers. A few days later an articulated lorry turned up with a huge 3m cardboard box with said pipe rattling around inside! This was getting like a farce in one of Tom Sharpe’s Wilt novels!