Jun 172015

I was keen to get the car roadworthy as soon as possible in order to drive it up to Nuneaton to have the hood put on. The difficulty at the moment is booking it in for work as it needs to coincide with dry weather!

Fortunately the day of the MOT was a fine sunny day enabling it to be dropped off as soon as the garage opened. It had been booked into a local Jaguar specialist the following day to have the suspension geometry set up. There was a chance, with a following wind, that it might be road legal by the weekend!

After a few anxious phone calls during the day, it became clear that they wouldn’t have time to complete the MOT. They hadn’t even had time to get to the bottom of the front carb running far too lean. The car was returned to base and a second MOT appointment made for the weekend.

Back for MOT attempt 2

I decided not to cancel the wheel alignment the following day, planning a quiet route for the 2 mile journey that was not frequented by the Rozzers. Alas the car only made it about ¼ mile before conking out. After all the years of effort, it was a particularly low moment. I was certain it was due to fuel starvation and that wretched air lock.

Luckily it was possible to get the car back in 100 yard stints, by waiting a few minutes between each spluttering halt. The second MOT was essentially a repeat of the first with no progress made and the car returned yet again, without any work done either on the tuning or MOT.

I took the opportunity to take the front carb off to look into why it was causing the front two cylinders to run too lean. The jet was properly centred but the float lever arm was found to be 3/16” off resting on the specified standard, a 7/16” rod.

More dismantling to investigate the front carb The float lever should rest against a 7/16″ rod

A few days later it was back for the third attempt. The revised plan was to leave the carb tuning as historic vehicles aren’t subject to MOT emissions testing and just do the MOT checks. As they say, third time lucky …. this time it proved to be just that! It had passed the MOT and was ‘road legal’ … the first time in over 20 years!

A hurrah moment!
Passing the MOT

Although it had taken three trips to achieve, I’m considering it as passing first time! However there were obviously issues to address before it could be considered truly roadworthy. In fact, the MOT brake test has to be done out on the road due to the limited slip diff. They only just managed to perform the test and get it back to the garage before the fuel starvation ground them to a halt!

It was time to get some advice from my fellow trusted petrolists who had put in the IRS and come up with a plan. My worry was that it was the pipe running under that car that was a fault. Renewing it would require the IRS to be dropped and all that entailed – something I really wanted to avoid!

Their suggestion was to replicate the pipe run off the car using some flexible hose of the same bore. This would provide a more accurate flow rate that one could expect to achieve. If it is significantly different from the output of the under floor pipe, then it would point to this section being the root cause.

There were no kinks or collapsed bends in the pipe. The only other explanation was a blockage of some sort, but it’s a single length of (brand new) pipe which is open at one end and terminated at the other with a soldered connector that just mates with the bulkhead union. Hmmmmm …. could the soldered joint be causing a restriction and hence the reduced flow? It should be possible to poke a rod from the boot space through the union and into the pipe to get a feel to whether there was a restriction.

Rather embarrassingly, all my woes were of my own making. It wasn’t an air-lock, just my dreadful soldering! I’d almost completely blocked off the pipe by applying copious amounts of solder which had flowed into the bore. Worst still, I had compounded the error by not checking my handiwork before fitting the pipe.

My shocking soldering skills! Fabricated drill bush worked fabulously!!

Further advice was sought on how best to removal it. Within no time at all, John had kindly arranged for a 3/8” BSP bolt to be machined/adapted to act as a drill bush to screw into the rear union. This would ensure the drill bit was perfectly aligned with the centre of the pipe and I would not be making matters worse by damaging the pipe itself!

The flexible hosing that had been used find out the expected flow rate was rigged up to pass fuel back up the wrong way to blow out any swarf. The same flow rate test was repeated with the re-bored pipe.

Testing the expected flow rate

A flow rate of 1.5 litres was achieved with the flexible pipe and surprisingly an even higher rate of 1.75 litres per minute is now flowing in the pipe. Compare that to the 250ml before the re-bore! I’m just so happy and relieved we got to the bottom of the problem and resolved it!

Not surprisingly this has cured the fuel starvation problems and the engine is running much more smoothly. Although it still needs a good tune.

A couple of items were corrected as part of the MOT – even though I’d checked every suspension nut and bolt, I had still missed putting on the lock wire on the radius arm bolts. I’d also left off the jockey wheel for the water pump tensioner and the alternator fan was slightly loose. So these were corrected.

Other recommendations were to ditch the original nylon style fuel pipe in the engine bay in preference for some flexible rubber hose and always carry a fire extinguisher!! The nylon pipes are very hard and I had noticed occasional leaks if they were knocked out of position. I’d rather have a traditionalist tut-tut than run the risk of a fire!

Even though the suspension geometry still needs to be set up, I couldn’t resist taking it out on the road for its first real spin. It was actually the first time I’d driven an E-Type and I wasn’t disappointed!

The first drive in the E-Type
Jun 162015

It feels as though the list of outstanding tasks is getting longer rather than shorter. So they have been prioritised into those required for the MOT and those that can wait. Due to the age of the car the MOT is essentially limited to checking the suspension, fuel/brake lines and lights. However, knowing the person doing the MOT, I’d asked them if they would cast a more critical eye over the whole car.

I’d been having trouble balancing the carbs and, although it’s not part of the MOT, I thought it best to have a second pair of eyes look over them. The front two cylinders are running too lean, even though all three carbs have been set to the standard reference point for tuning. So it will be tuned and the headlights aligned beforehand.

I also have concerns about the fuel flow. Last year the petrol tank had be put in-situ to just to start the engine for the first time. The tank was then removed to be painted and since then I noticed that the fuel flow seems to be rather low. Although I suspect I just hadn’t noticed the problem before.

Testing fuel flow from pump Comparing the fuel flows per minute:
250ml at front bulkhead in bottle,
2litres at rear bulkhead in jug

The measurements of the amount of fuel pumped in one minute was taken at the rear bulkhead union and then at the other end of the pipe at the union on the front bulkhead. Although it’s not really a valid test, as there wouldn’t be any back pressure at the rear union, it did provide a feel for the drop off in flow – 2 litres per minute measured at the rear bulkhead union and only 250ml per minute at the front bulkhead union.

Suspicion is that it may be due to an air-lock created in the pipes. However advice from the forum suggested that a pump in good working order would have more than enough ummph to purge any air locks. Some further checks will be done to get to the bottom of the problem.

Longacre Camber/Castor Tool

The intention was to set up the suspension geometry myself and so I’d purchased a Longacre electronic camber/castor tool and a Trackace tool for the wheel alignment. The camber/castor tool has three legs which rest against the wheel rim with an accurate inclinometer attached in the centre. However I wasn’t thinking things through and had completely overlooked needing clearance for the central spinners.

The prongs on the legs don’t have the reach so I’ll have to have some made up. Unfortunately the MOT centre no longer has accurate electronic measuring tools for suspension set up. This will have to wait until after the MOT.

For some reason one of the dash indicator tell-tale lights had stopped working and the fault traced to the switches in the indicator stalk. It was easier to take the whole steering column off and investigate further on the bench. A loose back-plate on the switch mechanism had allowed the indicator contact to move about and be bent out of shape. So it was easily rectified.

The clamping bolts on the upper and lower steering column’s UJs had been taken off to aid the removal of the upper column. However, I’d become side-tracked and had not refitted them before attempting to tick off another pre-MOT task … making sure the speedo drive was working.

Needless to say, as I was turning round, after completing a successful straight 40 yard speedo run up the drive, the lower column dropped out of its splines. All steering was lost, blocking a now busy communal drive!
Apart from being stupid, it was a rather timely reminder! The complete suspension parts list was used as a check sheet to ensure every suspension nut and bolt was revisited to make sure everything was correctly torqued.

Mudguards, shields and undertrays
The various mudguards, shields and undertrays aren’t strictly necessary for the MOT. However they were fitted, as the horn relay needs to be mounted on the LH mudguard. John Farrell had produced a good guide to the locations and orientations of the five different types of brackets:

Front frame bracket locations Five different bracket sizes

The first to be installed was the air in-take shield which is attached to bracket A at the top and B at the bottom. The leading face is also bolted directly to the frame. It’s worth noting that bracket E for the floor undertray needs to be put in place around the frame before the shield is attached. In fact it’s worth putting all the brackets in place before attaching any of the mudguards, shields and undertrays.

A & B brackets for air intake shield Bracket E for undertray is fitted
before in-take shield!

The bracket attachments to the frames are identical on both sides of the car, with the obvious exception of the air in-take shield. The torsion bar shields are attached by three brackets – the rear two have the tab with the bolt holes pointing upwards while the front one points downward. Note: the middle bracket on the LH frame is also used to secure the bottom of the exhaust heat shield.

Alternate rear torsion bar shield
& undertray brackets
Shield bracket also attaches bottom
edge of exhaust heat shield
Front torsion bar bracket (L)
and mudguard bracket (R)

The two floor undertrays are simply bolted in place. Although the right hand undertray has a cut out with a separate cover to provide access to the oil filter.

Left hand undertray Right hand undertray,
without oil filter access panel

There wasn’t any point in completing the fitting the mudguards because they will have to be removed to provide access to set the camber and castor. So at this stage they were only bolted to the sill end panel and attached at the front to a side frame bracket. At least this allowed the horn relay to secured for the MOT. Normally the alternator and aircon (when fitted) relays would also be attached to the LH mudguard, but by modifying the alternator it no longer requires a relay.

LH mudguard temporarily in place just for the MOT Location of horn relay. Alternator relay isn’t needed

Air Filter
I was regretting not trial fitting the air filter earlier. The new fuel pipe I’d made protruded too far from the face of the toe box, hitting the air filter. Fortunately it was possible to remove a short length from the filter end which resolved the fitting problem but re-introduced all the air bubbles causing the air locks.

It took a while to work out the best method of fitting the air filter element, canister lid and air plenum. Once the canister lid and rubber grommet are in place, there wasn’t sufficient access to pull the grommet up around the lip of the plenum chamber. Eventually I found the best solution was to connect these components off the car and then fit and remove as a single unit.

Filter canister was hitting the fuel pipe Adjusted fuel pipe now narrowly misses it Fitting canister lid first didn’t work

Alternator testing
Another task was to ensure the alternator was charging properly when the engine was running at higher revs. The outcome wasn’t as I’d hoped – it wasn’t charging at all, measuring only 12.5 volts! The converted alternator is now self-energising – the AL terminal, normally used for monitoring the alternator output via the ignition warning light, now provides a DC supply to power the field coil. Finding earth via the field coil through the 4TR voltage regulator.

Testing the alternator

The AL terminal was reading zero voltages at idle rather than the expected 14.3 volts! The voltage regulator controls the alternators output to avoid ‘run-away’ where its output would continue increasing until it burnt out the various internal components and/or windings. Increasing the voltage across the field coil increases the alternator output voltage, which in turn increases the field coil voltage.

The 4TR regulator acts as a fast-acting on/off switch. When the output of the alternator increases above a determined voltage (around 14.6v), the regulator switches off the current flowing in the field coil and therefore the alternator voltage drops. Once it has dropped sufficiently, it switches the current in the field coil back on and the alternator output starts to increase, until the cycle repeats.

A passing peacock offered
no helpful advice!!

Suspicion fell naturally on my modifications to the alternator and also the 4TR regulator, which are known to be fragile. A faulty voltage regulator can easily be identified by removing it and using a jumper lead to connect the F and ‘-‘ leads in its connector.

If it is faulty, starting the engine will cause it to start charging (indicated by the alternator output voltage or the battery gauge rising above the battery’s normal 12.3-4 volts) If so, the engine should be switched off immediately and the 4TR unit replaced. It was a great relief to find it was the 4TR unit that was at fault and not my handiwork! A replacement was ordered which confirmed the diagnosis and it is now working as expected.

Crossing fingers
I didn’t want to drill holes in the bodywork for side mirrors and so some clamp on mirrors have been attached to the window frames. That just about completed all the pre-MOT jobs.

Clamp on side mirrors fitted After all this time, it’s finally ready for the MOT!!

For the first time in several decades, 1R1421 hit the road …… on it’s way to the MOT centre! …. fingers firmly crossed!!

Jun 102015

Rear bumpers
Both sets of bumpers had been trial fitted before the bodyshell went off to the paint shop, so I wasn’t expecting any issues fitting them. For once, this turned out to be the case with the rear bumpers!

Comparison of S1 (top)
& S2 rubbers

The rear bumpers were fitted a while back as they needed to be in place before the two rear light clusters. Or more accurately, they just had to be in-situ otherwise the vertical fixing bolts cannot be fitted once the rear lights are on. Similarly the overrider bolts have to be in-situ when the outer quarter sections are bolted on.

The outer quarter sections were fitted first but just hand tight so that they could still be adjusted once the centre section was added. The final tightening waiting until the rubber was in position.

The tweaks to the rear end aesthetics continued by fitting the much thinner S1 rear bumper rubber rather than the S2 rubber, which seems unnecessarily thick and unsightly. Fitting the bumper rubber to fill the gap to the body proved to be the hardest part. It has to be fitted in a single run as the overriders are shorter than the full depth of the bumper, and therefore can’t be used to hide a joint.

Plenty of protective masking tape! Quarter sections fitted first Overrider bolt needs to be in place

A notch had to be taken out of the underside (not seen) section of rubber to enable it to go round the tight curvature at the ends of the outer quarter bumpers. However the main problem was as the various bolts were tightened. The ever decreasing gap to the body caused the rubber to either pop out or ruffle up.

Aligned & centred, awaiting rubbber Locating notch to take out of rubber Completed rear bumpers with overriders

The rear bumpers were completed by the addition of the overriders and their thin strips of rubber.

Front bumpers
Unfortunately the same could not be said for the front bumpers! The first task was to re-tap the four mounting holes as their threads had been clogged with overspray.

The thinner S1 bumper rubber was carried over to the S2 front bumpers and were held in place by a metal clip at each end. Although I used a small dab of superglue instead. Again the two outer quarter sections were loosely fitted first, followed by the centre section.

The mounting holes needed re-tapping Yet more protective masking tape!

However I couldn’t get the centre section to slot neatly into the RH quarter bumper, thinking it must be due to a horizontal alignment problem. After a lot of head scratching and standing back to check the alignment, the cause became clear. The RH quarter was drooping downwards at quite an angle.

Damage to bonnet panel

On closer inspection the inner most mounting bracket was found to be bent. At some point, it must have been involved in a front end knock. But worse than that, the retaining nut on the new bonnet has been welded set back from the bonnet panel by quite some distance and also pointing slightly downwards.

This and over-tightening due to using a ratchet spanner has resulted in the panel being deformed. I’m really kicking myself for not using normal spanner and taking a bit more care!

The annoying part is the bumpers had allegedly been fitted before the body was painted and the bumpers re-chromed. So I would have thought the alignment/bent bracket would have been spotted. At least the panel damage will be hidden from view once the bumper is on …. although it will bug me, as I know it’s there!

I think the best solution will be to fabricate a pair of matching chamfered washers. However this will have to wait until after the MOT, which is only days away! Bumpers aren’t required for an MOT so I’ve got plenty of time to address the problem.

Rear Number Plates
Framptons had been chosen to supply suitable period front and rear number plates. The original square plates at the rear were being replaced with a more typical oblong shaped plate, to enable straight exhaust pipes to be fitted rather than the splayed type.

Other changes were the dropping of the number plate mounting bracket (specifically designed for a square plate) and the stainless steel rear finishing panel.

Rear plate fits between
reverse lights …. just!!
Characters start to be obscured
when viewed from a height
The characters start to become obscured when looking for a higher angle.

Fortunately the registration number is quite short so, by making the plate as narrow as legislation would allow, it could be mounted directly to the car body between the two reversing lights.

The vertical positioning of the top of the plate was made the same as it had been originally. However, without the number plate bracket, the plate is mounted further inboard, causing the bumper to partially obscure the top of the plate when observed from more lofty (camera!) positions.

Quite pleased with the revised rear

The local MOT tester indicated he was happy with the location as it just has to be visible directly from the rear.

In this position the lower inch or so protrudes below the vertical body panel. The aluminium number plate chosen is only little over 1mm thick and so the lower edge would be prone to accidental damage.

To avoid this, it was first mounted to a piece of 4mm acrylic sheet. Everything being held on with double sided number plate tape.

Front Number Plates

Horizontal & centre guide tapes

I was a lot more apprehensive about mounting the stick-on number plate to the bonnet! Some time was spent marking out a horizontal length of masking tape approx 15.5cm below the bonnet bulge to act as a guide.

For the front, I’d opted for silver characters on a black background. The characters had been applied centrally to what I assume was a standard sized adhesive background. Therefore there was a lot of black space at either end due to the short registration number. The first job was to trim each end by approx 3.5cm and recreate the curved corners.

The centre line of the car was marked on the guide tape and the corresponding centre of the plate marked with a strip of masking tape.

Initial placement once
sprayed with soapy water
Fine adjustments can easily
be made at this stage
Finally excess water was
squeezed out

The fixing advice was to give both the bonnet and the adhesive side of the plate a generous spraying with soapy water (a squeeze of washing-up liquid in a pint of water). Then place the plate in position, trying to avoid trapping air bubbles.

While there was a film of soapy water between the plate and bonnet, there was plenty of time to manoeuvre it into its final position. It was only once the water was squeezed out, working from the centre out, using a soft cloth, that the number plate became semi-fixed in position.

Using masking tape to mark the centre of the plate wasn’t such a good idea. It tended to lift the plate when it was removed. It would have been better to wait until it was completely dry and firmly stuck before removing the tape …. or just memorise where the centre line is on the plate!

In the end, fitting the front number plate wasn’t as nerve racking or difficult as I’d imagined. Although I did have my trusty niece to assist with the difficult bits!

Boot badges

Finishing touches – boot badges

Even the simple task of mounting the boot badges took longer than expected. The retaining nylon cups were pressed into the holes in the boot but there was no way the legs of the badges could then be pressed into the cups.

A little heat was applied to make the cups more pliable, without success. The only way I could get them to fit was to drill out the cups, one drill size smaller than the badge legs. I’m sure I’d been sent the wrong sized cups!

No matter how simple a task, it was quite satisfying putting on the finishing touches.

Jun 092015

My list of tasks to finish off the interior trim has been getting shorter and shorter, without even lifting a finger …. meanwhile Suffolk & Turley’s list has been getting longer and longer! The two vinyl-covered panels for each B-post were offered up and it appears that some metal might need to be removed from the panels. So I thought it best to consult them before getting the grinder out!

The first panel is attached to the face of the B-post and creates a ‘closing’ flange against the door card. It needs to be positioned to:

  • allow for the thickness of the door card
  • finish level with the top of the B-post
  • allow the doors to close beyond their natural closed position in order to latch

Ensuring there is sufficient room to latch means there will always be a slight, ideally parallel, gap between the panel and the door card.

Uneven gap between panel & door card The panel also protruded into the cabin Outer panel was missing mounting holes

However the panel’s inside edge protruded beyond the face of the B-post. This in turn pushed the second outer panel, which wraps around the face of the B-post and into the cabin, away from the body. It became a trade off between achieving a parallel gap and how much it protruded.

Making sure the top of the panel was flush with the top of the B-post determined the size of the gap at the top, between the panel and door card. Closing this gap would require the panel to be raised slightly and metal removed from the top of the panel to return it to being flush.

Alternatively, sticking to this gap down the full length of the B-post would require the panel to be rotated, moving the bottom of the panel inboard. This could only be achieved by taking metal off the lower edge as it is already hard against the sill. It would also cause it to protrude further into the cabin and so need the inner edge to be cut back as well.

Trim panel was welded!

Also I was expecting the larger wrap-around panels to have two holes in the metal for clips to secure them to the B-post. Another difference was the replacement trim panels were much wider at the base.

The open day at SNG Barratt was an excellent opportunity to look over a number of different cars to see how these panels should be fixed.

On a couple cars, notably a lovely OSB S2 OTS, both panels were fixed with chrome screws with cups. Although my original panels didn’t have any screw holes. One thing is for sure … I definitely won’t be attaching it as I had found it …. welded!!

Also I can’t for the life of me work out how the outer sun-visor brackets fit with the A-post finishers. I had assumed it should be fitted behind the finisher but it would then be impossible to fit the nut on the visor attachment.

Door card clips also used to fix A-post finishers Although stumped how the visor bracket fits!

For now I’m leaving the sun visors off and will ask Suffolk & Turley about it when it’s up having the hood trimmed.

Boot Space

Dynaliner used in place of jute

Originally the bulkhead in the boot space was covered in jute which was then overlaid with Hardura. The trim kit didn’t include this piece of jute so some 1/4″ Dynaliner was fitted in its place.

Fitting the inertia reel in the boot caused far more trimming issues than I’d expected, taking two attempts at the Hardura until it was acceptable. The reels are located as far outboard as possible which required the side cards to be fitted before the reels.

The downside of this and the desire to make the installation as neat as possible (hiding the bolts securing the reels under the rear bulkhead Hardura), means that if access is needed to either the fuel filler area or fuel pump in future, the side cards may have to be sacrificed. Also the new cards would probably need to be modified with cut-outs for the reels in order to re-fit them.

Boot bulkhead and side cards Side cards secured by #4 screws & cups

The side cards were simply held in place along the upper trailing edge by three #4 self-tapping chrome screws & cups.

The boot boards weren’t original and needed replacing anyway but were useful in providing templates for the replacements in marine grade plywood. I believe the originals were also painted black but it seemed daft to go to extra expense and lose the wood finish. So they were treated with finishing oil to keep out moisture.

The left hand board is permanently secured by three #10 self-tapping screws – for some reason the front two are slotted countersunk screws & cups and the rear one with a hex head & washer! A metal bracket is also attached to the underside of the board to support the RH board.

Boot cable passes through oval hole Front attachment of LH boot board

A number of rubber pads are inserted into the bracket to stop the RH removable board from rattling. However the repro pads were quite tall so the only way I could get the two boards to lay flat was to fit a strip of wood under the bracket.

Additional strip of wood under bracket Strip matches height of rubber pad

As the RH board needs to removable, the rear is held against the boot board flange by a clamping bracket, which is riveted in place. Its shape acts as a spring pressing the board against the flange but allows it to be withdrawn by pulling it forward.

The front of the board is held down by a stud that presses into a retaining clip, riveted to the flange. The stud was attached to the board using a Tee nut insert. Originally the board just had a finger hole cut into the board to lift it, although I decided to fit a brass ring pull instead.

Rear clamping bracket Front stud and clip

The only way I could get the petrol tank to fit was to remove the stud clip. So it had to be riveted back in place. Although I’m not convinced this should have been the case to remove the tank!

Measure twice, cut once – locating stud position The stud clip riveted back in place

The final task was to fit the four pop-fasteners to hold down the Hardura covering the floor of the boot. I used some blu-tack spread onto the boot floor/boards to locate the required positions of the male connectors. Pressing down on the Hardura stud left a suitable imprint.

Boards in-situ Marking pop-fastener positsons

The wires hanging down on the left hand side are for an LED boot light that will be operated by the boot hinge making contact with a mirco switch.

Radio console and central console

Angling the centre consule
under the radio console

I was expecting trouble fitting the radio and centre consoles …. and I was not disappointed! The radio console with all the stereo wiring was relatively easy to put in place, although not secured at this stage.

The centre console needs to be slotted under the radio console and then lowered at the rear, while feeding both the handbrake lever though its slot and the gear stick into its gaiter. Easier said that done!!

No matter how I positioned the handbrake and gear lever, I just couldn’t get the console over them both at the same time. Some advice posted on the forum for troublesome consoles was to disconnect the handbrake cable to provide a greater range of movement.

Still no joy! Success was finally achieved by detaching the whole handbrake from its mountings. Although it was short lived. The whole console then couldn’t be pushed forward to enable the rear to be lowered to the floor.

It needed quite a bit of Dynaliner underlay to be removed from underneath the radio console and easing the sides of the console apart before it fell into place. It was so tight I was questioning the wisdom of adding the 3mm foam under the lower bulkhead Ambla!

Seats and seat belts
The under-seat Harduras were next. Holes were cut, or more accurately drilled, for the seat bolts and the seat belt anchor bolt. The location of the holes was found by pushing a thick needle up through the bolt holes from beneath the car.

The seat’s front mounting points have a thick spacer to raise the seats so the slider release bar doesn’t foul the carpeted floor strengthener.

Seat mounts and belts installed Gratuitous interior shot as it nears completion!

I wasn’t sure if these spacers should fit above the Hardura or pass through them. In the end, the length of the mounting bolts dictated larger holes were needed so the spacer could pass through to the floorpan.

Spacer sized holes had been cut in the Koolmat when it was fitted, which wasn’t necessary for the rear seat mounts. So two spacers were used – one inserted to fill the hole in the Koolmat and one to raise the seat runners off the Hardra.

A needle was press through Hardura
to locate the mounting holes
The seats slide onto the front mounts &
secured by screws & spacers at rear

The buckle ends of the seat belts were then mounted to the transmission tunnel through holes in the centre console. At last the seats could be put in to finish off my side of the trimming.

Rear view mirror

Loctite kit worked a treat

I made the mistake of purchasing some double–sided tape from Halfords, sold specifically for the task of attaching rear view mirrors. As with all of their products, it was monumentally useless for the task it was designed. The mirror was found lying in the footwell the morning after it had been fitted. It hadn’t even been subjected to the expected vibrations of normal driving or being adjusted.

The second attempt was made with a Loctite kit and was much more successful. The mirror button is bonded to the windscreen with a strong adhesive, activated by a mesh fabric. The bonding only takes a minute to secure the button and is fully cured in 15 minutes.