Sep 292015
 

Progress has been slow of late and the finishing line still feels some way off. I’m still waiting for the trimmers to have a slot to fit the hood and some of the outstanding internal trim. At least the enforced delay would allow some teething problems to be addressed. The most pressing being issues with clearance of the gear lever and gear selection.


Removing gear lever gaiter
revealed lack of clearance
with the gearbox cover

Something was seriously amiss with the positioning of the gear lever in relation to the central console. The lever was too far back making it difficult selecting either 2nd or 4th. Even once selected, the convoluted rubber gaiter was being compressed against the console, resulting in a tendency to pop out of gear into neutral.

The console couldn’t be moved rearward as it was already in contact with the rear bulkhead. Likewise there’s no adjustment in the positioning of the lever so it couldn’t be moved forward. The only option would be to undo the engine mounts and stabiliser to prise the whole transmission forward, but this would only gain a millimetre or two at best.

I’d been forced to remove the centre console in order to drive the car, which allowed me to swap over the rubber gaiter to one used on the later v12 models. The bulbous, convoluted design had been changed to be more slim-line. Several members of the E-Type forum had suggested using the later design to alleviate minor clearance issues with the centre console. Although I wouldn’t consider the lever impacting the metal gearbox cover as minor!

Convoluted S2 gaiter versus
slim-line V12 gaiter
The gaiter is secured to the
gearbox cover by a clamping ring
V12 gaiter is more suited
to the shape of the console

At this point I just happened to notice the mounting of the gear lever mechanism differed from the diagram in the parts catalogue. The company chosen to recondition the gearbox had missed out some fibrous Tufnol washers and mounted the main spring washer on the wrong side of the gearbox lid!

Repositioning the spring washer to its intended location gained around 8mm of clearance and, with the addition of the Tufnol washers, removed all the free play in the gear lever action. Much better! It should be sufficient to stop popping out of 2nd & 4th once the central console is refitted.

Parts manual shows correct
location of spring washer
Incorrect location
between jaw and lid
Lever mechanism components
(now including missing washers!)

Although the clearance problem was just masking a potentially more serious issue. More often than not, changing down into 2nd gear would result in awful graunching. It was fine double de-clutching so I suspected there might be an issue with the synchromesh. I was trying to kid myself that the reconditioned gearbox just need ‘bedding in’ simply because I just couldn’t contemplate having to fix an internal gearbox issue!


Synchromesh relies on friction
between the two cone surfaces

However, from my limited knowledge of gearboxes, it uses standard interference fit synchromeshes which helps engagement by matching the speed of the chosen gear to that of the output shaft.

Therefore a gearbox with a new synchromesh would have ample friction. Graunching would point to a lack of friction and the need to replace the synchromeshes.

It was time for a second opinion so again I turned to John and Martin who’d installed the IRS many moons ago. Their advice was to perform some investigative tests; first to rule out the clutch disengagement, which might result in similar symptoms, and the second to check the action of each synchromesh to confirm which, if any, were the route of the problem.

I hadn’t considered the clutch but if it wasn’t disengaging properly, the layshaft and gears would still be driven by the engine and the synchro would be acting as the clutch. Therefore likely to produce graunching, although I guess in all gears.

The suggested test to rule out a disengagement issue was to depress the clutch, with the hand and foot brakes off. Wait for around 10 seconds to allow the layshaft and gears to stop spinning and then select a gear. If the clutch wasn’t fully disengaging, the gears would still be spinning and the car would show signs of wanting to pull away.

On the positive side, the outcome was that the clutch was operating correctly. Although it was therefore pointing more to a dreaded synchromesh problem. Their next tests were of a similar nature, depressing the clutch from neutral. However rather than waiting to allow the gears to stop spinning, the gear lever was pushed immediately and firmly into the chosen gear without any wait. This would be done for each gear, selecting with both a fast and delayed lever push.

The theory being that a worn synchro would not develop sufficient friction with the selected gear to enable their speeds to be matched before their dog teeth engaged. The faster the action the less time there would be to synchronise the speeds.

The test should be repeated several times for each gear, doing a full ‘re-set’ each time (from neutral and clutch up), to see if a pattern emerged. If the synchros were working correctly there wouldn’t graunching on either the fast or delayed action. A suspect synchro, in my case 2nd, would graunch in the ‘no-delay’ fast instances and possibly on the delayed selection.


A run in the car without the cover
revealed the cause of the problem
(note – relocated spring washer)

I was very relieved that no graunching was evident in any gear, for either action. Perhaps it wasn’t an internal gearbox problem after all, which would require an engine out fix. I took the opportunity to take the car for a spin, while the gearbox cover was off, so I could see the selection mechanism at work in more realistic road conditions.

What I observed surprised me and explained the graunching that I’d been misdiagnosing as a synchromesh problem. The corrections in the lever mechanism had made subtle changes to the geometry by moving the lever directly over the quite narrow 1st/2nd selection rod. Previously it had been at a slight angle so the lever could also catch the reverse selection rod at the same time.

More importantly the reason for the graunching was actually caused by selecting reverse gear instead of 2nd!! A sprung plunger is used to avoid accidentally selecting reverse while using the forward gears. However the resistance it offered was so weak it was quite easy to go beyond 2nd all the way into reverse without realising.

Gearbox lid removed to check
selector rod operation
Selector arrangement and
reverse plunger & adjustment

A sprung ball bearing presses into a groove in the plunger to create the resistance and can be adjusted via a setscrew. Even so, for a given setting, there was a noticeable difference in the effort required to depress the plunger depending on whether the lever was starting in the 1st/2nd or 3rd/4rd planes in the gate. This was simply due to momentum, with less effort required from the 3rd/4th side of the gate.

I opted to set the desired resistance from this position which should minimise the frequency of accidentally selecting reverse while changing down from 3rd to 2nd. The compromise is that it needs a good shove to select reverse when the lever is in the 1st/2nd plane, but this would typically be while stationary.

It was a great relief to get to the bottom of the gearbox problems although the only slight niggle is occasionally not being able to engage 3rd from 2nd. The 1st/2nd selection rod doesn’t always quite reach its neutral position but allows the lever to cross the gate for 3rd. As it hasn’t reached neutral, the interlock is doing its job and prevents another gear being engaged, in this case 3rd.

If baulking occurs going from 2nd to 3rd, the lever must be returned to the 1st/2nd plane to ensure its knocked into neutral before going for 3rd again. I took the top of the gearbox off to see if the ‘O’ rings were causing too much resistance in the movement of the 1st/2nd selection rod for the detent to pull/hold it in neutral. But all seemed in order.

It appears that this is not uncommon and can be avoided by a more sympathetic gear changing technique using light finger pressure and ‘palming’ the lever to guide it. I had been changing from 2nd to 3rd by applying a constant forward and sideways force rather than three distinct movements.

The double de-clutching I had used to overcome the graunching, adding weight to my synchromesh diagnosis, had worked simply because it changed my technique of changing gears. Therefore avoiding accidentally selecting reverse.

Fingers crossed this will be the end of the gearbox issues!!

Jun 102015
 

Rear bumpers
Both sets of bumpers had been trial fitted before the bodyshell went off to the paint shop, so I wasn’t expecting any issues fitting them. For once, this turned out to be the case with the rear bumpers!


Comparison of S1 (top)
& S2 rubbers

The rear bumpers were fitted a while back as they needed to be in place before the two rear light clusters. Or more accurately, they just had to be in-situ otherwise the vertical fixing bolts cannot be fitted once the rear lights are on. Similarly the overrider bolts have to be in-situ when the outer quarter sections are bolted on.

The outer quarter sections were fitted first but just hand tight so that they could still be adjusted once the centre section was added. The final tightening waiting until the rubber was in position.

The tweaks to the rear end aesthetics continued by fitting the much thinner S1 rear bumper rubber rather than the S2 rubber, which seems unnecessarily thick and unsightly. Fitting the bumper rubber to fill the gap to the body proved to be the hardest part. It has to be fitted in a single run as the overriders are shorter than the full depth of the bumper, and therefore can’t be used to hide a joint.

Plenty of protective masking tape! Quarter sections fitted first Overrider bolt needs to be in place

A notch had to be taken out of the underside (not seen) section of rubber to enable it to go round the tight curvature at the ends of the outer quarter bumpers. However the main problem was as the various bolts were tightened. The ever decreasing gap to the body caused the rubber to either pop out or ruffle up.

Aligned & centred, awaiting rubbber Locating notch to take out of rubber Completed rear bumpers with overriders

The rear bumpers were completed by the addition of the overriders and their thin strips of rubber.

Front bumpers
Unfortunately the same could not be said for the front bumpers! The first task was to re-tap the four mounting holes as their threads had been clogged with overspray.

The thinner S1 bumper rubber was carried over to the S2 front bumpers and were held in place by a metal clip at each end. Although I used a small dab of superglue instead. Again the two outer quarter sections were loosely fitted first, followed by the centre section.

The mounting holes needed re-tapping Yet more protective masking tape!

However I couldn’t get the centre section to slot neatly into the RH quarter bumper, thinking it must be due to a horizontal alignment problem. After a lot of head scratching and standing back to check the alignment, the cause became clear. The RH quarter was drooping downwards at quite an angle.


Damage to bonnet panel

On closer inspection the inner most mounting bracket was found to be bent. At some point, it must have been involved in a front end knock. But worse than that, the retaining nut on the new bonnet has been welded set back from the bonnet panel by quite some distance and also pointing slightly downwards.

This and over-tightening due to using a ratchet spanner has resulted in the panel being deformed. I’m really kicking myself for not using normal spanner and taking a bit more care!

The annoying part is the bumpers had allegedly been fitted before the body was painted and the bumpers re-chromed. So I would have thought the alignment/bent bracket would have been spotted. At least the panel damage will be hidden from view once the bumper is on …. although it will bug me, as I know it’s there!

I think the best solution will be to fabricate a pair of matching chamfered washers. However this will have to wait until after the MOT, which is only days away! Bumpers aren’t required for an MOT so I’ve got plenty of time to address the problem.

Rear Number Plates
Framptons had been chosen to supply suitable period front and rear number plates. The original square plates at the rear were being replaced with a more typical oblong shaped plate, to enable straight exhaust pipes to be fitted rather than the splayed type.

Other changes were the dropping of the number plate mounting bracket (specifically designed for a square plate) and the stainless steel rear finishing panel.

Rear plate fits between
reverse lights …. just!!
Characters start to be obscured
when viewed from a height
The characters start to become obscured when looking for a higher angle.

Fortunately the registration number is quite short so, by making the plate as narrow as legislation would allow, it could be mounted directly to the car body between the two reversing lights.

The vertical positioning of the top of the plate was made the same as it had been originally. However, without the number plate bracket, the plate is mounted further inboard, causing the bumper to partially obscure the top of the plate when observed from more lofty (camera!) positions.


Quite pleased with the revised rear

The local MOT tester indicated he was happy with the location as it just has to be visible directly from the rear.

In this position the lower inch or so protrudes below the vertical body panel. The aluminium number plate chosen is only little over 1mm thick and so the lower edge would be prone to accidental damage.

To avoid this, it was first mounted to a piece of 4mm acrylic sheet. Everything being held on with double sided number plate tape.

Front Number Plates


Horizontal & centre guide tapes

I was a lot more apprehensive about mounting the stick-on number plate to the bonnet! Some time was spent marking out a horizontal length of masking tape approx 15.5cm below the bonnet bulge to act as a guide.

For the front, I’d opted for silver characters on a black background. The characters had been applied centrally to what I assume was a standard sized adhesive background. Therefore there was a lot of black space at either end due to the short registration number. The first job was to trim each end by approx 3.5cm and recreate the curved corners.

The centre line of the car was marked on the guide tape and the corresponding centre of the plate marked with a strip of masking tape.

Initial placement once
sprayed with soapy water
Fine adjustments can easily
be made at this stage
Finally excess water was
squeezed out

The fixing advice was to give both the bonnet and the adhesive side of the plate a generous spraying with soapy water (a squeeze of washing-up liquid in a pint of water). Then place the plate in position, trying to avoid trapping air bubbles.

While there was a film of soapy water between the plate and bonnet, there was plenty of time to manoeuvre it into its final position. It was only once the water was squeezed out, working from the centre out, using a soft cloth, that the number plate became semi-fixed in position.

Using masking tape to mark the centre of the plate wasn’t such a good idea. It tended to lift the plate when it was removed. It would have been better to wait until it was completely dry and firmly stuck before removing the tape …. or just memorise where the centre line is on the plate!

In the end, fitting the front number plate wasn’t as nerve racking or difficult as I’d imagined. Although I did have my trusty niece to assist with the difficult bits!

Boot badges


Finishing touches – boot badges

Even the simple task of mounting the boot badges took longer than expected. The retaining nylon cups were pressed into the holes in the boot but there was no way the legs of the badges could then be pressed into the cups.

A little heat was applied to make the cups more pliable, without success. The only way I could get them to fit was to drill out the cups, one drill size smaller than the badge legs. I’m sure I’d been sent the wrong sized cups!

No matter how simple a task, it was quite satisfying putting on the finishing touches.

Jun 092015
 

My list of tasks to finish off the interior trim has been getting shorter and shorter, without even lifting a finger …. meanwhile Suffolk & Turley’s list has been getting longer and longer! The two vinyl-covered panels for each B-post were offered up and it appears that some metal might need to be removed from the panels. So I thought it best to consult them before getting the grinder out!

The first panel is attached to the face of the B-post and creates a ‘closing’ flange against the door card. It needs to be positioned to:

  • allow for the thickness of the door card
  • finish level with the top of the B-post
  • allow the doors to close beyond their natural closed position in order to latch

Ensuring there is sufficient room to latch means there will always be a slight, ideally parallel, gap between the panel and the door card.

Uneven gap between panel & door card The panel also protruded into the cabin Outer panel was missing mounting holes

However the panel’s inside edge protruded beyond the face of the B-post. This in turn pushed the second outer panel, which wraps around the face of the B-post and into the cabin, away from the body. It became a trade off between achieving a parallel gap and how much it protruded.

Making sure the top of the panel was flush with the top of the B-post determined the size of the gap at the top, between the panel and door card. Closing this gap would require the panel to be raised slightly and metal removed from the top of the panel to return it to being flush.

Alternatively, sticking to this gap down the full length of the B-post would require the panel to be rotated, moving the bottom of the panel inboard. This could only be achieved by taking metal off the lower edge as it is already hard against the sill. It would also cause it to protrude further into the cabin and so need the inner edge to be cut back as well.


Trim panel was welded!

Also I was expecting the larger wrap-around panels to have two holes in the metal for clips to secure them to the B-post. Another difference was the replacement trim panels were much wider at the base.

The open day at SNG Barratt was an excellent opportunity to look over a number of different cars to see how these panels should be fixed.

On a couple cars, notably a lovely OSB S2 OTS, both panels were fixed with chrome screws with cups. Although my original panels didn’t have any screw holes. One thing is for sure … I definitely won’t be attaching it as I had found it …. welded!!

Also I can’t for the life of me work out how the outer sun-visor brackets fit with the A-post finishers. I had assumed it should be fitted behind the finisher but it would then be impossible to fit the nut on the visor attachment.

Door card clips also used to fix A-post finishers Although stumped how the visor bracket fits!

For now I’m leaving the sun visors off and will ask Suffolk & Turley about it when it’s up having the hood trimmed.

Boot Space


Dynaliner used in place of jute

Originally the bulkhead in the boot space was covered in jute which was then overlaid with Hardura. The trim kit didn’t include this piece of jute so some 1/4″ Dynaliner was fitted in its place.

Fitting the inertia reel in the boot caused far more trimming issues than I’d expected, taking two attempts at the Hardura until it was acceptable. The reels are located as far outboard as possible which required the side cards to be fitted before the reels.

The downside of this and the desire to make the installation as neat as possible (hiding the bolts securing the reels under the rear bulkhead Hardura), means that if access is needed to either the fuel filler area or fuel pump in future, the side cards may have to be sacrificed. Also the new cards would probably need to be modified with cut-outs for the reels in order to re-fit them.

Boot bulkhead and side cards Side cards secured by #4 screws & cups

The side cards were simply held in place along the upper trailing edge by three #4 self-tapping chrome screws & cups.

The boot boards weren’t original and needed replacing anyway but were useful in providing templates for the replacements in marine grade plywood. I believe the originals were also painted black but it seemed daft to go to extra expense and lose the wood finish. So they were treated with finishing oil to keep out moisture.

The left hand board is permanently secured by three #10 self-tapping screws – for some reason the front two are slotted countersunk screws & cups and the rear one with a hex head & washer! A metal bracket is also attached to the underside of the board to support the RH board.

Boot cable passes through oval hole Front attachment of LH boot board

A number of rubber pads are inserted into the bracket to stop the RH removable board from rattling. However the repro pads were quite tall so the only way I could get the two boards to lay flat was to fit a strip of wood under the bracket.

Additional strip of wood under bracket Strip matches height of rubber pad

As the RH board needs to removable, the rear is held against the boot board flange by a clamping bracket, which is riveted in place. Its shape acts as a spring pressing the board against the flange but allows it to be withdrawn by pulling it forward.

The front of the board is held down by a stud that presses into a retaining clip, riveted to the flange. The stud was attached to the board using a Tee nut insert. Originally the board just had a finger hole cut into the board to lift it, although I decided to fit a brass ring pull instead.

Rear clamping bracket Front stud and clip

The only way I could get the petrol tank to fit was to remove the stud clip. So it had to be riveted back in place. Although I’m not convinced this should have been the case to remove the tank!

Measure twice, cut once – locating stud position The stud clip riveted back in place

The final task was to fit the four pop-fasteners to hold down the Hardura covering the floor of the boot. I used some blu-tack spread onto the boot floor/boards to locate the required positions of the male connectors. Pressing down on the Hardura stud left a suitable imprint.

Boards in-situ Marking pop-fastener positsons

The wires hanging down on the left hand side are for an LED boot light that will be operated by the boot hinge making contact with a mirco switch.

Radio console and central console


Angling the centre consule
under the radio console

I was expecting trouble fitting the radio and centre consoles …. and I was not disappointed! The radio console with all the stereo wiring was relatively easy to put in place, although not secured at this stage.

The centre console needs to be slotted under the radio console and then lowered at the rear, while feeding both the handbrake lever though its slot and the gear stick into its gaiter. Easier said that done!!

No matter how I positioned the handbrake and gear lever, I just couldn’t get the console over them both at the same time. Some advice posted on the forum for troublesome consoles was to disconnect the handbrake cable to provide a greater range of movement.

Still no joy! Success was finally achieved by detaching the whole handbrake from its mountings. Although it was short lived. The whole console then couldn’t be pushed forward to enable the rear to be lowered to the floor.

It needed quite a bit of Dynaliner underlay to be removed from underneath the radio console and easing the sides of the console apart before it fell into place. It was so tight I was questioning the wisdom of adding the 3mm foam under the lower bulkhead Ambla!

Seats and seat belts
The under-seat Harduras were next. Holes were cut, or more accurately drilled, for the seat bolts and the seat belt anchor bolt. The location of the holes was found by pushing a thick needle up through the bolt holes from beneath the car.

The seat’s front mounting points have a thick spacer to raise the seats so the slider release bar doesn’t foul the carpeted floor strengthener.

Seat mounts and belts installed Gratuitous interior shot as it nears completion!

I wasn’t sure if these spacers should fit above the Hardura or pass through them. In the end, the length of the mounting bolts dictated larger holes were needed so the spacer could pass through to the floorpan.

Spacer sized holes had been cut in the Koolmat when it was fitted, which wasn’t necessary for the rear seat mounts. So two spacers were used – one inserted to fill the hole in the Koolmat and one to raise the seat runners off the Hardra.

A needle was press through Hardura
to locate the mounting holes
The seats slide onto the front mounts &
secured by screws & spacers at rear

The buckle ends of the seat belts were then mounted to the transmission tunnel through holes in the centre console. At last the seats could be put in to finish off my side of the trimming.

Rear view mirror


Loctite kit worked a treat

I made the mistake of purchasing some double–sided tape from Halfords, sold specifically for the task of attaching rear view mirrors. As with all of their products, it was monumentally useless for the task it was designed. The mirror was found lying in the footwell the morning after it had been fitted. It hadn’t even been subjected to the expected vibrations of normal driving or being adjusted.

The second attempt was made with a Loctite kit and was much more successful. The mirror button is bonded to the windscreen with a strong adhesive, activated by a mesh fabric. The bonding only takes a minute to secure the button and is fully cured in 15 minutes.

May 202015
 

With the vinyl and Ambla fitted, attention turned that next phase of the trimming – the underfelts (or Dynaliner in my case), Hardura and carpets. The decision to fit Dynaliner rather than the jute underfelt was largely driven by the ability to bond the two materials to the silicone side of the insulating Koolmat.

The preferable order of fitting would normally be from the footwells backwards, to avoid needing to clamber over installed trim. At the time, the primary focus was to complete the installation of the inertia seat belts – these would have to be fitted for an MOT, the carpets wouldn’t! However the trimming is quite satisfying so I decided to press on and complete the interior.

Rear of cabin
Before the rear bulkhead Hardura could be glued, I first had to rectify the lack of jute/Dynaliner. The excess Ambla bonded to the silver Dynamat had to be lifted so a layer of 1/4” Dynaliner could be inserted. The outer edges of the Dynaliner were cut marginally shorter to provide a channel to hide the body looms.

Underlay on bulkhead was overlooked Re-bonding the Ambla to the Dynaliner Ambla with Dynaliner added to bulkhead

The fitting of the bulkhead panel was fairly uneventful. The strengthening/anti-drumming indentations in the bulkhead panels were taped over beforehand with reinforced cross weave tape. The Hardura was bonded to the Dynaliner in four stages; initially just the leading few inches to fix it in position, then back to the vertical section. This allowed a reasonably tight curve to be made when bonding the vertical section and finally the upper horizontal section, which required a little trimming to butt neatly to the body.

Indentations in body panels were taped over Hardura bonded to vertical section

The thin vertical section, from A-post to A-post above the rear bulkhead and wheel arches, is finished with two pairs of vinyl covered panels. Suffolk and Turley suggested leaving these and the door cards off as it would be better for them to fit these when they trim the soft top. The door cards need to be left off so they can make fine adjustments to the angle and maximum height of the drop glass, to ensure the glass seals against the hood’s rubber seals.

Gearbox cover
For some reason a previous owner had butchered the gearbox cover by hack sawing off a section around the gear lever. Presumably not satisfied with that, they’d then proceeded to knock seven bells out of the front apron! New metal was welded in to repair and the dents knocked out with a hammer and dolly.

Many of the cover holes were distorted The front apron was a real mess!
Otherwise it appeared to be fine! Gearbox cover back in shape

The soundproofing foam that sat between the gearbox and the cover hadn’t stood the test of time so a replacement was ordered. I was expecting to have to cut the foam down to size to fit, however I wasn’t expecting by how much! The 2″ replacement foam made it impossible to even come close in aligning the mounting holes.

The foam also tends to grip the cover rather well so some silicone lubricant was used to help push the cover into place. Even so I had to admit defeat, taking a sharp carving knife to remove foam from around the pinch points. Eventually I managed to get and hold it in position long enough to secure it with a few self tapping screws. If I were to do it again, I wouldn’t bother obtaining a repro foam from one of the usual suppliers and would just make it from a small sheet of 2″ cushion foam.

The replacement foams are ‘generous’!! Secured with self tapper & oval washers

Floor strengthener carpets
I’m not sure why but I decided to fit the carpet pieces covering the floor strengtheners next. These really should have been fitted at the end, just before the final transmission tunnel carpet is glued in place. So all the trimming of the footwells was spent clambering over them.

The pieces were marginally longer than the circumference of the strengtheners, in part due to the thickness of the additional Koolmat. So they were fitted with the small amount of excess under the seat sections, rather than cut them down to size. I might have to trim them back if it lifts the front edge of the under-seat Hardura too much.

Masking to bond the front face Clamps used to hold in place Carpet edging gives neat joint to vinyl
Clamps were used to hold the carpet in place while the contact adhesive dried.

The three sides of the floor strengtheners were tackled in turn with clamps and/or weights used to hold the carpet firmly in place. The aim was ensure each bend in the carpet was tight against the panel. Although it really wasn’t necessary in the end and it could have been tackled in one go.

Footwell trimming
The general order of fitting for both footwells was:

  1. Under-dash, toe box and transmission tunnel underlay
  2. Under-dash Hardura panel(s)
  3. A-post/Sill Hardura
  4. Floor underlay next to transmission tunnel
  5. Transmission tunnel carpets
  6. Toe box carpet
  7. Underlay for sunken floor section
  8. Removable floor carpeting

The reason the two underlay pieces for the floors (4 & 7) were not done at the same time as the other underlay was again to avoid working over them while fitting the other trim. The Dynaliner can be susceptible to tears if not protected.

However there are slight differences between the two footwells. Before any underlay is added to the left hand footwell, a vinyl covered conduit panel needs to be fixed along the upper, outer edge. This hides the LH body loom, alternator loom and main loom where the latter two enter the cabin space along the run to the bottom of the A-post.

The conduit panel wasn’t part of the trim kit, which is a bit strange since it needs to be covered in coloured vinyl. The ‘originality’ thread on the E-Type forum was, as usual, very helpful. The shape of the conduit panel changed to a shallower profile during the production run although I think the part number remained the same. The later shaped conduit is available from RM & J Smith Ltd.

Covering loom conduit Accidentally covering the screw holes The ‘tail’ will be cut back later

I made a mistake with my first attempt, making the vinyl covering to its exact shape. Again from the forum, the A-post end should have a ‘tail’ of vinyl that isn’t bonded. This covers the looms as they bend around the corner of the dash and let in through a cut-out in the under-dash card. The other mistake was to forget to mark the location of the two holes for the self-tapping screws before covering them over! Fortunately I was able to use the previous photos to help locate them with a pin.

The other differences in the footwells are i) the RH underdash trim is in two sections, sitting either side of the steering column and ii) the LH rear transmission carpet is fixed with snap clips to the floor so it can be lifted to expose the access cover for the gearbox oil filler.

1. Under-dash, toe box and transmission tunnel underlay
The photos below show the difference between the two footwells – the vinyl covered conduit is the first item of trim to be added to the LH footwell. Also the rear section of the LH transmission tunnel is not covered in underlay to provide access to the gearbox oil filler, via the large, black, circular grommet.

LH footwell RH footwell RH under-dash underlay

2. Under-dash Hardura panel(s)
It doesn’t matter which order the under-dash and A-post/sill Harduras are fitted for the LH footwell, as both butt up against the loom conduit. However, for the RH footwell, the outer under-dash Hardura needs to be fitted first so the A-post/sill Hardura butts up against it.

The outer edges of the under-dash Harduras (apart from the smaller of the RH pieces) are each secured by two 1/2″ #4 self-tapping screws & cups. The excess will be hidden beneath the cardboard dash cards.

Single Hardura for LH Two pieces of Hardura for RH

3. A-post/Sill Hardura
The surface that these Hardura pieces are glued to is not flat due to the curvature of the sill, the recess for the body loom and the ‘alcove’ in the footwell A-post. More reinforced cross-weave tape was applied to cover these voids to enable the Hardura to be kept as flat as possible. Even so, there didn’t seem to be anything that could be done at the lower toe box corner, due to a strengthening strut.

These Harduras are held in place on the face of the A-post with two #4 self tapping screws & cups (and the bonnet release handle) but bonded inside the footwell.

A-post footwell voids taped over LH Hardura – note #4 screws RH Hardura

4. Floor underlay next to transmission tunnel
Next was the floor underlay beside the transmission tunnel as the transmission tunnel carpets need to be fitted before the toe box carpets.

LH floor underlay RH floor underlay

5. Transmission tunnel carpets


Transmission tunnel carpet

The transmission tunnel carpet turned out to be the most difficult part of the Hardura and carpet trimming. The carpet bends around two 90 degree bends making it difficult to keep the top edge tight against the Hardura trim above. There’s excess carpet along the lower edge so it’s only the upper edge that needs to be focused on.

I cut out wedges to enable the carpet to be navigated around the two bends and also cut a slit where the tunnel narrows at the rear, near the gearbox cover.

A slot also needs to be cut into the carpet to let in the lower radio console mount. The top edge was simply tucked under the upper console mounting bracket.

‘Durable’ snap fastener LH transmission carpets RH transmission carpets

The rear LH transmission carpet needs to lift to gain access to the gearbox oil filler so it is only attached to the floor by two snap fasteners. The upper edge is held under the centre console so no gluing is necessary. Both RH carpets are glued.

6. Toe box carpet


Transmission tunnel carpet

The toe box carpets have finishing edging on three sides. The unfinished lower edge needed to be cut back to provide access to the holes in the floorpan for the carpet retaining studs.

Again, the lower outer corners have to cover the same strengthening strut as the A-post/sill Harduras so it was impossible to get completely flat.

I believe a foot board was also fitted to the passenger footwell to provide the occupant with a foot rest. I’ll have to do some investigation and will possibly fit one at a later stage.

7. Underlay for sunken floor section
The Dynaliner underlay pieces for the floor were bonded by first treating the silicone Koolmat with Loctite 770 (Polyolefin primer) and then using Loctite 406 to bond it.

LH lining of sunken floor RH lining of sunken floor

8. Removable floor carpeting
The final trim is the removable front carpets. These are held in place by four plastic carpet studs. Although I’ll be adding these later, during Part 3 – ‘Finishing off the interior’, which will include the installation of the consoles, under-dash cards, seats and seat belts.

Completed LH footwell Just the consoles to go! Interior finally coming together

The trimming often required the skills of a contortionist and, at times, would best be described as working in a coffin! There’s not a lot of room in the footwells which made masking and the trial fitting and fettling of the various trim quite a challenge. Often all that could be seen from the outside were two legs sticking in the air!


Burning of the trimming rags

The confined space also didn’t help with fumes from the spray-on contact adhesive. At times the nozzle became partially restricted causing unpredictable spray patterns. This required the trimmed areas to be well protected from possible overspray.

So there was great pleasure in marking the end of the trim gluing with the ceremonial burning of the sheets and rags used for masking!

Mar 252015
 

New hood pivot bolts

The removal of the hood many years ago had been problematic to say the least. The threaded section of the pivot bolts is a much smaller diameter than the unthreaded section, which the hood sticks pivot around. The bolts wouldn’t come free even after applying penetrating fluid and adding an extension piece onto the ratchet handle. The force being applied was more likely to shear the threaded section, so I stopped to have a re-think.

However the problem wasn’t that the threaded sections had seized within the bracket’s captive nuts as I had thought. Small holes are provided in hood sticks for oiling the pivot joints. Unfortunately it’s doubtful they had ever been troubled during routing maintenance!

The result – the whole pivot joint had rusted, fusing the bolt to the hole in the frame. The hood no longer pivoted on the bolts. The bolts and frame just rotated in unison in the mounting brackets, as the hood was raised and lowered. The only way I could then remove the hood was complete with mounting brackets.

I couldn’t believe how solidly they had rusted in place. In a foolish fit of pique, I ground away the heads of the bolts, which were looking decidedly rounded by this time. Cutting through the threaded sections to finally free the hood from the brackets. The whole hood was left, as is, until now so I still had to overcome the issue of removing the remains of the bolts.

The remaining sections of the bolts wouldn’t budge even after soaking in Plus Gas penetrating fluid for several weeks, applying heat, attempting to press them out in a vice and, in a Cleese-esque manner, giving them a good thrashing with a club hammer!

The hood needed a full overhaul Every hood fixture was heavily rusted First, removal of the old canvas

The plan is to have the hood professionally fitted by Suffolk & Turley. Even though they will happily undertake all the work, including the renovation of the frame, I wanted to do as much as possible myself. So I set about removing the canvas and dismantling the frame into its components on order to have them powder coated.

First, the canvas was detached from the rear of the frame – by removing the side chrome trims, which clamp the canvas rearward of the drop glass and unpicking the webbing attaching it to the frame sticks. Removing the hollow, square-sectioned rubber seal, which makes the seal against the top of the windscreen, reveals the canvas and vinyl edges in the channel underneath. The canvas and vinyl could then be pealed off the canopy, while applying heat to soften the adhesive.

Main head/cantrail brackets attached to frame Bonded edge of canvas/vinyl under screen seal Vinyl removed revealing wood canopy bows

The detaching the cantrail and main head brackets also proved troublesome. The removal of the pivot bolt remains was soon joined by the need to remove half a dozen screw stubs. Some of the screws fixing the main head/cantrail brackets and hood clamps had sheared or had to be drilled out. Their slotted heads had become too damaged by attempts to unscrew them.

Latch covering trim under two canopy mounting bolts Softening old adhesive with white spirit

The pivot bolts were removed by drilling a pilot hole down the centre of the bolt. It was more important to keep the pilot hole square on to the bolt than ensure it was precisely centred on the bolt. Progressively larger drill bits were used to enlarge the hole until a line of rust could just be seen running down the length of the hole. A pointed drift was then used to collapse the perimeter of the bolt inwards allowing the bolt remains to be pushed out.

The same approach was followed for the screw remains in the hood sticks. Although this time it was essential that the drill bit was centred on the bolt so the thread wasn’t damaged. They were then re-tapped to reinstate the thread.

Initially the canopy didn’t look too bad but it had clearly been worked on before as the whole frame had been hand-painted a light blue rather than the original light grey. The forward wood bow had a small section missing and it had started to delaminate. The edge of leading edge had rusted away along the entire length of the canopy although it should just be a matter of welding in some new metal.

The leading edge has rusted away The wood bow was also delaminating Re-tapping the frame after drilling out screw stubs

A second opinion was needed so it was taken up to Suffolk & Turley in Nuneaton. Their evaluation was not good, enquiring whether I’d found in it a canal! In addition to the problems I’d spotted, they pointed out that the lip where the two outer skins meet had been cut away at one end. It should be proud of the wooden bow by approx. 2cm as it forms the upper part of the channel for the rubber seal. Also, the front 6 inches across the full width of the canopy was largely filler.

Their preference is to re-use original parts rather than replace. The replacement wood bows are available but the quality is not great and it takes some work to get them to fit. Even so, their verdict was it wouldn’t be cost effective to repair the metal canopy and the front wood bow was unlikely to survive its removal. Only the rear wood bow was worth saving, as these are no longer available.

It was a long way to travel to learn that the canopy was junk and I was now resigned to inevitable fleecing that was coming my way! Both for a new metal canopy and a wood bow, which I believe is north of £300 from SNG Barratt!

As luck would have it Martin Robey had one S2 canopy left in stock so it was secured on the spot. A week or so later it hadn’t turned up so I gave them a call. It was ‘virtually’ in stock … they just had to make it first! Two months later it finally arrived.

In the meantime I’d found a Czechoslovakian subsidiary of the German company Slavik, which made all the wooden components for earlier Jaguars, and at a very reasonable cost of £75 for the wood bow. They were making a trip to the UK a few weeks later and suggested sorting out the payment and shipping once over here. Needless to say, I didn’t hear from them so I presume they forgot to bring it and I got no response from follow up emails.

Trial fitting the rear bow to the new canopy Replacement canopy wood bow

Finally a piece of luck, a wood bow appeared on eBay. I’d lost so much time waiting for parts, I contacted the seller and agreed a private sale, rather than wait until the end of the auction. A trial fit of the bow with the new Robey canopy confirmed it will need a fair amount of fettling to get it to fit.

Now I had all the components, it was off to Nationwide Coatings”to have them powder coated in BS381C-694 ‘Dove Grey’. The advice from the E-Type forum was that this was the correct/nearest colour match. Typical …. the powder coating manufacturers no longer supply powder covering the old BS381C range!


Original paint allowed a colour match

Traditional paints do not adhere to powder coating. However new paints have been produced specifically for this purpose. So they recommended powder coating the hood components to the nearest light grey colour available and then over-coating with a colour-matched paint. A couple of parts had hidden surfaces that missed being hand painted in blue so they will be used to get an exact match to the original colour. The powder coating should provide the durability while maintaining the correct colour.

My aim had been to get the car ready for a trip to the Monaco Grand Prix at the end of May. This is now looking to be a very long shot, having lost two months waiting to just trial fit the hood. Also, in a nod to practicality, I’d decided to fit inertia seat belts rather than static seat belts. These have been on order since the New Year and there’s still no confirmed delivery date. The fitting 3-point Seat belts became mandatory from 1968, so I won’t be able to get an MOT until they do.

Jan 092015
 

Once it became clear that the September target for obtaining an MOT would be missed (albeit with a stripped out interior), the pressure was off. With the cold, dark days of winter setting in, holidays in warmer climes became preferable to working on the car and so the momentum lost.

The new target being the spring, once the last traces of road salt have gone. Just in time to sort out any niggles and put a few miles on the clock … before a mooted caper to the Monaco Grand Prix. It would be a fitting inaugural tour! Apart from the lack of trim, the car appears to be nearing completion. However looks are deceiving and the ‘To Do’ list is still alarmingly long. So I’ve got to get cracking!

I’ve not been looking forward to installing the trim as it’s notoriously fiddly and something I’ve not tackled before. It’s the part everyone sees so it has to be done well. After all the effort so far, a poor job would not suffice! Further procrastination was required under the guise of trim planning ….

I settled on the following order of events:

  • Door A-post rubber seals
  • Fit and align the window frames and drop glass
  • Door B-post seals (the sill seals will have to wait until after the sill vinyl has been fitted
  • Trial fit hood frame to ensure the glass seals against the hood’s cantrail rubber seals
  • Vinyl trimming – sills, lower rear bulkhead and wheel arches
  • Sill seals and chrome finishers
  • Underfelts followed by hardura panels, vinyl covered finishing panels and carpets
  • Centre console and radio panel
  • Under-dash felts, hardura and cards
  • Install the seats!
  • Install inertia seat belts in the boot space

I’ve decided it was best to leave the fitting of the hood and tonneau cover to the experts, Suffolk & Turley, who supplied the trim kit. Finally, once the car is returned, I’ll fit the door cards and boot trim.

Door Seals
New door rubbers were obtained from SNG Barratt. However I wasn’t happy with the A-post and sill seals as, not only were their cross-section profiles noticeably larger than the originals, they were made of a much harder foam rubber.

Other owners have posted issues with poor quality seals leading to ill-fitting doors which need slamming just to get the door to latch. The general consensus on the E-Type forum is to source all the rubber seals from COH Baines so a new set of door seals was duly ordered. I would thoroughly recommend doing so as they are much closer to the originals and made from a softer foam. I believe SNG Barratt have subsequently started to source many of their seals from COH Baines.

Profile comparison of sill seals Darker Baines rubber is thinner & softer

Hutsons had pre-fitted the doors to the bodyshell, so the door strikers and locks were correctly set and panel gaps were all spot on. However the fitting of the A-post seal requires the door to be removed to provide sufficient access. So the outline of the door hinge was marked out with masking tape to aid re-fitting.

Position of hinge marked with masking tape Tape was also used to trial fit the seals

Before removing the door, the A-post seal was trial fitted by taping it in place. Adjustments were made until the door could be closed easily without too much resistance. Some trimming of the seal was needed where it has a protrusion at the base of the A-post.

Initially I had cut the seal exactly to length but the door felt a little hard to close. It is rather subjective at this stage, without the resistance of the other seals. I wanted to keep the additional force needed to compress the A-post rubber to a minimum.

Being nearest the hinge, it requires considerably less force to compress this seal so any noticeable increase now would be magnified once the B-post seal is fitted. Being made of a softer foam allowed it to be cut marginally shorter and then stretched to reduce its cross-section, therefore reducing the resistance.

Once I was happy with the fit, it was time to remove the door to bond the seal in place with the Alphabond AF178 high temperature contact adhesive I’d used for the Koolmat.

The advice for getting the best bond and avoid the seals pulling away is to clean them with methylated spirit to remove any traces of the mould release agents and roughen the surface to be bonded with sandpaper. The contact adhesive should then be applied in three steps:

1. Apply a layer to the rubber seal and leave until tacky
2. Apply a layer to the seal channel and again leave until tacky
3. Apply a second layer to the rubber seal, once the first layer has gone tacky, and when this second layer becomes tacky, push the seal into the channel

I found it easier to tackle the A-post seals in two stages: first from the triangular section at the base of the A-post up to the top of the A-post and then the lower section down to the sill. For the lower section, I inserted a small diameter rubber hose into the gap in the rubber seal before securing it with masking tape. This worked really well in holding the rubber against the sides of the channel until the adhesive had dried.

Top half of A-post bonded first Once dried, the lower half was tackled

Everything was held in place for 24 hours with masking tape and then any excess adhesive removed. First softened with a cloth soaked in white spirit and then carefully wiped away. There were some areas where the adhesive had lifted away from the paint work so these required some touching up and re-bonding. Another tip I was given was to use Dum-Dum style body putty to fill any small holes or gaps.

Previous hanging of doors had been a frustrating and fiddly experience so I only wanted to do it once. The weight of the various internal door mechanisms is not insignificant. So I wanted to have the doors at their full weight before setting all the panel gaps, thus avoiding the risk of them dropping by adding them later.

The doors were refitted to their marked positions and the door internals completed (see below). Only then could the fine adjustments be made to get the panel gaps right. As would be expected, the doors had dropped slightly under the additional weight of the internal mechanisms and so the hinge position within the door had to be adjusted to compensate. A trolley jack was used in place of a suitable assistant to support the door while fine tuning the panel gaps.

Solo door hanging Bonding the bonnet landing seal

I could then move on to the B-post seals, which were tackled in the same manner as the A-post seals. Although these were fitted in one go and needed the bonded edge to be sanded down in places to enable the door to close without undue force. Hopefully, once the final sill seals are added, the doors will still shut easily. If not, it might be a case of re-doing all the rubber seals and re-hanging the doors!

Finally the bonnet landing rubber was bonded in place while the adhesive was out. It was also more manageable by tackling this in two stages.

Door internals, window frames and drop glass
The next task was to complete the fitting of the door internals and drop glass. The initial fitting of the frames produced very different results. The frame on the driver’s side was fairly close and possibly needed a shim added at the rear to bring the leading edge parallel with the A-post.

The passenger side was way off! The leading edge was angling away from the A-post, by approx. 6-7mm at the top, and this was with the rear of the frame raised by two thick shims. Something was wrong!

The driver’s side frame was fairly close However it wasn’t the case for the passenger side!

Suspicion fell on the geometry of the window frame, which had been re-chromed. The re-chroming process involves polishing the underlying plating before the chrome layer is applied. This can cause distortion due a combination of the pressure applied to polish the part and the resulting heat that is generated.

Sure enough, when I tried to fit the drop glass, the regulator channel the glass sits in would not fit into the frame. It was too long, front to rear. I then used the driver side drop glass as a comparison – it’s length fitted fine! Much head scratching ensued … it must be the reproduction regulator channel.


Difference in angles of
rear regulator channels!

Overlaying the two revealed the problem. The angle of the rear of the regulator channel was way off on the passenger side. After much cursing of reproduction parts (that enable us to keep these cars on the road!), I set about removing the glass from the regulator channel. Gentle prising with a screwdriver would only end in tears as the rubber grips the glass very well.

Fortunately a small amount of penetrating oil worked wonders and the glass came out surprisingly easily. The rear edge was bent into the correct alignment and the glass and rubber re-fitted. Longitudinally it now fitted the frame.

Alas the same couldn’t be said for the width. The leading edge of the glass sits in a flock lined rubber channel. While at the rear, the short trailing edge of the regulator channel sides metal on metal in the window frame. The width of the repro ones were too wide.

Both regulator channels required a fair amount of filing to reduce their width so they slid easily within their channels. It was only once I started filing that I realised the rear section was made of brass but had then been zinc plated. When I had first fitted them I had cursed the fact that the reproduction parts hadn’t used brass, as in the originals!

Both regulator channels needed filing Regulator channel were polish to reduce friction

Once they slid easily within their channels, I decided to polish both the regulator channels and the window frames to reduce future binding problems. Some Shin-Etsu Silicone Grease will be applied to the seals and mechanisms before the door cards are fitted.

Attention returned to the passenger side window frame as the glass did not slide cleanly all the way down. The reason was found to be cause by the chromed leading edge of the window frame being bent out of alignment – both rearwards and outwards! Fortunately gentle persuasion allowed it to be re-bent close to its original shape.


The width of the channel
allows the glass to rattle

I thought this would be the end of my window woes. How wrong could I be! The flock lined front channel comes in two sizes for 4.75mm and 6mm glass. I had the latter but, with the glass being a little shy of 5mm, it allows the window to rattle within the channel. However, the smaller size would cause binding issues.

At this point I chuckled as I’d been in correspondence with the Jacksons whose E-Type refurbishment exploits have been covered in the E-type magazine. They had already experienced almost identical restoration issues, not just in the fitting the drop glass! But now I think I understood the issues they had encountered with the flock lined channel.

I also purchased some lengths of thin rubber strips to pack one side of channel in the window frame before inserting the flock lined rubber alongside. This closes the channel slightly to guide the glass without causing it to bind or allowing it to rattle.

Building up the door innards
The first task was to fit the door handles and then set the gap between the push button plunger and the lock/latch striker lever to 1/32”. This should ensure that the latch is fully released when the push button is pressed. Adjustments were made by slackening the lock nut on the plunger, adjusting the setscrew and then nipping up the lock nut.

Setting the plunger-latch gap Allen key fixing lever position Setting the handle/lock link

The fitting of the link between the door handle lever and lock requires the lever to be fixed in position. Aligning a hole in the lever with a hole in the rear casing allows a small Allen key to be inserted to lock the position. The link is then fixed to the handle lever. Its lower end has three overlapping, fittings holes and it is simply a matter of picking the best fit to the lock lever.

The regulator springs had been removed prior to the regulators being plated and were showing signs of rusting. They were shot blasted and blackened with a four stage process supplied by Caswell UK. The process only takes approximately 30 minutes but the final stage requires the component to be dipped in oil and then left to dry overnight. I’m not convinced how durable this finish will be and its ability to stop future rusting so it will be packed with grease prior to fitting the door cards.

Regulator springs prior to blackening Spring after blackening and dipping in oil Regulator wound to refit spring

With the springs fitted, the regulator could be inserted from above, followed by the two brackets to secure the bottom of the window frame to the base of the door. These brackets are moveable on their mounting stud so the lateral position of the top of the drop glass can be adjusted. These were only hand-tightened as they will need adjusting when the hood frame is trial fitted.

Regulator was fed in from above Rear window bracket Front bracket is shorter

I found it easiest to insert the window frame by first tilting it forward and inwards at the top until the front stud has cleared the door frame. It was then secured at the top in three places, where two screws pass through the window frame and door frame into a thin plate below. Shims can be added as required between the window frame and door frame to either raise the whole frame or tilt it so the frames leading edge is parallel with the A-post.

(Although when I mentioned this to E-type expert Ken Verity, he suggested the need to tilt the frame with shims would suggest the frame might not be 100% true. This may cause window binding problems so needs to be checked before continuing. Distortion is typically caused by people use the glass or frame to pull themselves from the car.)

Clearing the front stud Fixing for top of the window frame Regulator fitted and at full height

The external glass weather strip needed to be clipped onto the door skin before inserting the drop glass because there wouldn’t be sufficient access once the glass was in place. (Update – I was jumping the gun here and had to remove it! I had forgotten to fit the chrome door flash so had incorrectly assumed the weather strip was attached to the lip of the door skin. I think it needs to be clipped to the lip of the chrome flash!) The window regulator needs to be raised to its maximum height in order to engage it with the drop glass channel.

Engaging drop glass with regulator Almost there – drop glass fitted Door remote control attaches to lock

Next is the door remote control. Its link arm is attached to the door lock to enable the door to be opened by the interior lever. A wavy washer is fitted between the lock and the link arm to take up the free play. The square nuts fitted in the regulator channels set the maximum height of the windows but these will wait until the trial fitting of the hood.

The doors were also fitted with a bracket that had a semi-circular foam section bonded to it. This is to dampen vibrations in the remote control link arm. Unfortunately these were missing on my car but once again RM & J Smith came to the rescue for obscure, missing parts. They had a pair of original brackets that would need tidying up and the foam replacing.

Finding suitable replacement foam was not an easy task! Eventually I found Seals+Direct who offered a 1” diameter 1/2 round cord of expanded Neoprene (part ENHC94) which was ideal. Strips were bonded to the brackets with the Alfabond AF178 contact adhesive.

The small aluminium seal blocks need to be fitted to the trailing edge of the doors before the door rubbers are trial fitted because these compress the upper part of the B-post seal.

Bonding new rubber Damping brackets fitted Finally the sealing blocks

The last check was to ensure the height of the door frames against the A-post was even on both sides. The driver side was flush with the A-post cap while the passenger side was 1/8” lower. An equivalent depth of shims was added under the window frame edge to bring the frame up to the same level.

Driver’s frame flush with A-post Passenger side was 1/8” lower!

What should have taken a day or two ended up taking well over a week! Next will be the refurbishing of the hood frame ….

Update: a recent post in the ‘factory fit’ thread on the E-Type forum identified that the chrome bracket for mounting a hard top is secured at the top by a 12-28UNF cheese head screw. This screw passes through the channel for the B-post seal into the rear of the chrome bracket (circled in red below). Therefore the seal needs to be fitted after bracket and the bracket is fitted after the interior trim.

I will therefore have to undo my fine work and detach the top 3″ or so, by softening the contact adhesive with white spirit, and re-attach once the interior trim is completed.

Hard top securing bracket Securing screw behind B-post seal

Images courtesy of E-Type Forum

Apr 292014
 

Following standard practice, most of the external trim was trial fitted as part of the preparation of the bodyshell. This enabled the bumpers and/or bodywork to be fettled to ensure a perfect, even gap to the bodywork. Once completed, the bodyshell was passed on to the paint shop and the chrome parts sent off for re-chroming.

The exception was the rear bumpers which sadly had to be replaced. The car had obviously had a minor rear-end shunt that had resulted in a crease in the middle bumper section and the outer sections distorted beyond repair. Hutsons had trial fitted the new bumper sections, which they’d sourced from SNG Barratt.

One of the reported problems with the reproduction bumpers is that the chrome plating is generally thinner and not of the same quality as the originals. Even so, when the painted bodyshell and rear bumper were delivered, I wasn’t expecting to find the inside faces to be showing signs of rust!

I wasn’t too impressed as this really should have been spotted when they were being trial fitted and rejected. The dilemma now was that these fitted the painted bodyshell perfectly which may not be the case if I got Hutsons to replace them.

The intention had always been to paint the inside surfaces to provide better protection from the elements. So I decided to keep the new, rusty rear bumpers.

Meanwhile the remaining chrome trim had been dropped off to ACF Howell, who had been recommended. At the time, I felt reassured seeing many of the recognised Jaguar specialists listed on their white board of work in progress.

When they were returned, they’d already given the insides of the front bumpers and overriders a light coat of silver paint. However, on closer inspection, the paint was lifting in places on the overriders. Rather worryingly the cause was found to be more rust! So everything would be given a good coating of the silver Epoxy-Mastic 121 that I’d used on the front suspension.

Once all the chrome surfaces had been masked, the rusty areas of the ‘new’ bumper were bead blasted and the insides given three generous coats of epoxy-mastic followed by a couple of coats of Dinitrol 4010 hard wax. Hopefully this should be sufficient overkill to keep corrosion at bay for a while!

Feb 282014
 

Fortunately the vinyl covering of the dash fascia was in a reasonably good condition and just needed a good clean. Even though only a very mild detergent was used, the cleaning couldn’t bring back the lost sheen and depth of colour. After cleaning, it had an almost whitish appearance in the lower areas of the textured finish.

Apparently vinyl can ‘dry out’ and harden over time so I applied some trim restorer (Gtechniq T4) to see if this would help. The product is simply wiped on and left to dry. It worked a treat in restoring a deep black colour and satin finish. The photos below show the difference in appearance with and without the trim restorer (although the treated areas appear slightly glossier than in the flesh).

The rears of the facia were treated to a clean-up: Brasso for the copper plated central instrument panel and paint for the outer facia panels. The outer panels were showing signs of rust through the plating in places but it’s not possible to re-plate due to the vinyl coating.

The heater, demister and choke controls were also all looking rather shabby as areas of the wrinkle paint had been worn away. Rather than go down the route of powder coating these, like the cooling fan shroud, I decided to try to get a decent wrinkle finish using an aerosol can ….

…. well four in fact! For the first attempts, Halfords own brand of wrinkle paint was used. Utterly useless! The nozzle failed on the very first application, leaving paint spewing out around the nozzle until the entire can had discharged. I should have opted for the refund but foolishly decided to persevere instead. I’d got through almost the entire can (and my patience!) trying to get anything near to either an even or a wrinkled finish. Both? Forget it.

Common sense returned and I took great pleasure in hurling the remainder of the can into the bin. The next Hycote branded can came from an Auto Factors and wasn’t much better. In a final attempt, I purchased a can of VHT wrinkle paint as I’d found their products to be quite good when painting the alternator and back of the heat shield.

A mock up bracket for a boot light switch was used as a test piece. The instructions were followed to the letter: 3 coats of paint with exactly 5 minutes between applications. The paint goes on with a smooth glossy finish but soon wavy ripples appear. VHT recommend curing the paint by heating to 93 0C for an hour. Two test applications were made: the first left to dry naturally for several days before being cured while the second was left for five minutes before being placed in the oven.

A gloss finish initially Dried in ambient temp Oven dried finish

I preferred the more wrinkled finish produced by immediately curing the paint in the oven. It was easier to spray and cured one side of the levers and knobs at a time. The heater and demister levers simply pivot on the mounting bolt. However the movement of the choke lever is given an incremental feel by a leaf spring pressing a ball bearing, located within a hole in the lever, against a plate with evenly spaced ball bearing sized holes.

Oven curing Heater & Demister levers Choke lever, less leaf spring

A couple of practical but discreet enhancements require holes to be cut into the cardboard glove box. So, rather than butcher the original, a replacement glove box was fitted although like most reproduction parts it wasn’t a brilliant fit.

The top of the glove box is held in place against the facia by a retaining bracket while the bottom edge was originally secured with bifurcated rivets. The only suppliers of these types of rivets sold them by the 1000 and were based on the other side of the world. So standard 3.2mm pop rivets with washers were used instead.

There needs to be a gap between the facia panel and the bottom of the glove box in order to slot in the under-dash cardboard trim panel. Therefore suitably size spacers were needed over the rivet – 5mm thick M3 nylon washers were just about spot on.

Securing bottom of glove box USB and Megajolt sockets Connections hidden from view

As almost all modern gadgets are now powered/charged via the ubiquitous USB socket. I thought it sensible to tuck a double USB socket in the glove box to power phone chargers and Sat Nav while being out of sight. The sockets will be powered once the ignition is switched on.

The EDIS Megajolt unit for the electronic ignition can be programmed by connecting it to a PC via a serial port connection. To avoid needing to remove dash trim to reprogram, I’ve also put a 9-pin serial socket in the glove box. This is permanently wired to the Megajolt unit so any future programming of the electronic ignition system should be a doddle.

The outer heater and demister cables are clamped to a bracket mounted on the bulkhead. The only error I made was to connect up the interior heater valve cable before routing the inner cable through the valve’s trunion in the engine bay. It’s then impossible to fit the trunion onto the heater valve.

The positioning of the USB and serial sockets had to take into account the rear clearances as well as the routing of the demister tubing. With the dash fascia completed, next I’ll have to tackle the LED lighting for the various instrument gauges.


Update:
A while back I had been looking at adding either intermittent or even automatic wipers. However I’d shelved the plans as I hadn’t come across anything that could easily be reverted back to the original setup.

Once again a couple of the main protagonists on the E-Type forum had investigated suitable units and worked through how to incorporate it into each of the E-Type variants. So other owners wishing to do likewise have detailed fitting instructions and needn’t go through the pain of trial and error installing it. It even covered various mounting positions; either using a blanked off hole in the dash or more discreetly under the dash.

I decided to mount the intermittent wiper module, manufactured by Hella, in the hole in the dash above the Handbrake/Brake Fluid warning light. I’m not sure what this hole was originally used for. I assume either something specific to the FHC or an optional extra. However it was just blanked off on my car.

The unit works by producing a power ‘pulse’ which mimics switching the wiper motor switch on and then off. The wipers start to operate but, as the power is removed almost immediately, the wipers will stop the next time they reach the parked position, ie after performing a single wiping cycle. The frequency of the intermittent wiping is simply varied by turning the unit’s potentiometer knob. I’m not sure about the style of the knob so it might be replaced with a plain black one at a later stage.

Dec 282012
 

The seats had been a nightmare to remove from the car as the securing bolts were rusted solid and it was virtually impossible to get any penetrating oil into the threads due to the hardura trim beneath the seat. It also became clear that there was a fair amount of movement between the seat bases and the seat backs which would need to be invesitgated and addressed.

The seats in the S2 had the benefit over the earlier cars of being able to recline. The seat base and the seat back are joined by reclining mechanisms at each side, which are operated via a chromed lever. In normal use the seat back is locked in position by the engagement of toothed components within the mechanism.

The operation of the lever disengages the teeth, therefore allowing the seat back to move relative to the seat base. A connecting bar runs behind the seat so that the reclining mechanism is activated on both sides simultaniously and return springs ensure that the mechanisms return to the locked state when the lever is released.

The reclining mechanism showing the connecting bar which operates a toothed locking mechanism and also one of the return springs

The reclining mechanisms are attached to the seat backs by two countersunk screws at each side

Pressing out the connecting bar guides

There were two causes for the excessive movement. The first was as a result of stretching in some of the countersunk holes, for connecting the mechanism to the seat back. The second was due to the loosening of the pivot joint between the two halves of the mechanism.

The pivot joint consists of a round metal cylinder which is lipped at one end. This passes through the outer half of the mechanism until the lip is flush and then through the inner half of the mechanism. It is then MIG welded to the inner half. The pivot joint is cylindrical as it also acts as the pivot for the connecting bar, which has protrusions at each end which pass through the pivot centres.

The pivot joint was very loose on two of the mechanisms and had obviously been meddled with by a previous owner, probably trying to address the excesive play. So I thought it would be a good idea to dismantle them so that they could be repaired and painted.

With hindsight I don’t think they are designed to be dismantled as, to do so, requires the welded pivot joint to be pressed out to provide enough movement to disengage the various parts. I think this must have been what the previous owner had tried before giving up. However I’d reached the point of no return!

Dismantled at last Damage bolt hole In need of repair

The dismantled reclining mechanism. The reclining connecting bar interlocks with the toothed wedge piece to lock and release the seat back

The two parts show where the attachment hole has been stretched, causing excessive movement in the seat backs

The parts were shot blasted and the damaged ones repaired by adding new metal and then grinding back to the correct profile

The welds securing the pivot joints were ground down so that only a small amount of weld remained. They could then be pressed out using a vice. This provided sufficient movement of the connecting bar to disengage it from the interlocked toothed, wedge shaped piece (above left) while withdrawing it from the mechanism. In doing so the two halves of the mechanism then fell apart.

The individual parts were then shot blasted before new metal was added to the parts requiring repair to the stretched bolt holes. They were then ground back to the correct profile. All the parts were then painted in POR15 in preference to powder coating as I felt POR15 would give a much tougher finish.

Painting with POR15 New spray booth! Ready for rebuild

The parts were then painted with POR15 to give a tough coating which should be better at withstanding the abrasion

Hanging the parts to dry

The parts ready for the rebuild, which I wasn't looking forward to! Note: new machined joints and circlip to replace the need for welding

I wanted to avoid the need to weld the pivot joints to the mechanism. Fortunately a local from the pub runs a machine shop and offered to make up some new joints in stainless steel. Rather then being welded, the joints were machined with a groove so that they could be secured with a circlip. If they need to be dismantled in future it won’t be such a difficult task next time around. A week later four shiny new joints were delivered all for the cost of a pint!

At the same time as sorting the reclining mechanisms, the seats were stripped back to the frames as these were going to be sent away to be professionally re-trimmed. It’s possible to purchase re-trim kits which include new leather seat covers but most on the E-type Forum who had rebuild their cars recommended getting the seats and the central console done professionally and I was happy to take their advice!

Seat cover removed Seat back padding Edges covered in cotton

The seat back cover is secured at the base by stables into a plywood strip

The firmness of the seat back is provided by interconnected elastic rubber rings. The black plastic head rest guide had been snapped off.

A fibrous material provides the padding for the seat back

The removal of seat back cover was simply a matter of removing the securing staples around its base. The seat cover can then be slid off to reveal the metal frame and internal padding, covered in a plastic protective covering. The spring in the seat back is provided by a series of interconnecting rubber rings connected to the metal frame and the seat padding is an odd fibrous material. The edges were also padded out with compacted, loose cotton. All of this would be replaced during the re-trim.

The seat runners were removed from the seat bases but the release arms were scrapping on the underside of the metal frame. I suspect this might be due to incorrect shimming or the arms have been bent. I’ll have to sort this out when they are refitted.

The S2 seat runners differ from earlier cars as they have a connecting wire so the runners are released from both sides

The runner release arm was fouling the seat base. I think this is most likely to be incorrect shimming between the runner and the seat base

The seat base covers are similarly secured by staples into a material strip on the underside of the metal seat base frame. This time the padding is provided by a dense foam moulding and the spring by a rubber diaphragm. Both the rubber and foam had started to perish due to age but again these would be replaced.

The seat diaphragm rubber had started to perish

The seat foam was no longer bonded to the seat base so the seat foam and cover could just be lifted away from the frame

One other problem that wasn’t immediately obvious was that the front mounting points were broken. The mounting points are captive nuts which are welded in place however the metal had fractured almost the entire way round the nut. The seat bases were sent off to be repaired by Hutsons, who were doing the bodyshell work as I didn’t have the necessary metalworking equipment …. or the skills!

The seat frames, centre console and some other interior trim were then sent off to Suffolk & Turley to be re-trimmed. I had always envisaged that the car would be painted in British Racing Green and trimmed in a cream leather.

However a late change in paint colour to Oparlescent Dark Blue meant that I now needed to decide on an alternative interior colour. The colour choices offered by Jaguar for the interior for Oparlescent Dark Blue cars were Black, Light Blue and Red. Although I believe it was possible to specify any interior colour in their range when the cars were ordered.

I didn’t want black as I wanted some contrast to the black of the dash. I wasn’t that keen on the light blue …. probably biased because I’d never liked the original light blue exterior. So red it was! Although Eric Suffolk did try to tempt me with the light blue as he said it was his favourite colour. I must admit that Oparlescent Dark Blue with a red interior was probably the last combination I would ever have gone for so I hope it looks alright at the end. Too late to change my mind – I was committed now!

The rebuilt reclinging mechanism with freshly zinc-nickel plated return springs. Boy were the springs difficult to fit without destroying the new paint!

The completed seat, console and trim kit were picked up from Suffolk & Turley. They'd done a fantasic job - just like new!

The hard work and lengthy repair of the reclining mechanisms were worth it. I'm so pleased with the seats and console and now really eager to fit the interior

There was quite a time gap between sending the seat frames and console off to Suffolk & Turley and my finishing the repair of the reclining mechanisms. Work and other things were taking precedence. However I was now holding things up as the seats were awaiting re-covering and Eric was insistent that he needed the mechanisms to make sure the stitch lines in the seat back and seat base were aligned. So I made a last push to get the mechanisms rebuilt before posting them off to Eric to work his magic.

The reclining mechanism also has larger springs ro return the seat back to the upright position. I still need to source the bakelite knobs for the reclining levers

A good view of the connecting bar between the two sides of the reclining mechanisms

The seat frames were powder coated in the correct grey and new diaphragm and seat foam used in the retrim

Dec 042012
 

Overall the dash was in reasonable condition. There wasn’t any significant damage to the vinyl covering the three dash sections which was a relief. Although it’s possible to have them re-vinyled, I’m lead to believe that the textured finish isn’t the same as the original. All mine needed was a good clean. Unfortunately the dashtop vinyl hadn’t faired so well and had taken a fair amount of abuse in the past, so that it was now sporting several long tears around the central console area and needed to be replaced.

It looks as if the tears had started on the underside where the vinyl had been cut to allow it to be shaped to the curvature of the dashtop frame. Over time these tears had propagated to the top side of the dash. Fortunately replacement dashtops are readily available from the usual sources and have a generous excess for bondcing to the underside.

The vent surrounds had all started to rust, presumably from airborne moisture carried into the heater blower

The plastic vents on the underside could be withdrawn once the surrounds had been removed

There’s not much to the removal and dismantling of the dashtop. It’s secured to the bulkhead in four places; at the outer edges and brackets either side of the central console area. The map light fitting was simply removed by drilling out two securing rivets.

The underside had only slight rusting

Central mounting brackets

Map light fitting

Bemusingly both end air ducts had paint overspray.

The plastic ducts can be deformed sufficiently so they can be removed without damage

Removing the excess glue from the metal frame

The heater vents consist of plastic ducts, which are pushed through slots from the underside of the metal dashtop frame, and painted air duct surrounds. Two self tapping screws hold the surround and duct in place. All the surrounds had started to rust, presumably from airborne moisture carried into the heater blower from the engine bay, and so were to be lightly bead blasted and then powder coated. Annoyingly the powder coaters gave them a gloss finish rather than the requested satin. Hopefully they won’t be too distracting by reflecting too much sunlight.

The various dashtop components ready to be rebuiltI decided to powder coat the metal frame in light grey rather than re-plate it. All that was required was to remove the old vinyl top and clear off any remaining contact adhesive. At some time in its history the car must have been resprayed as there was quite a bit of overspray on the outer two air ducts. I still can’t work out why, as it would have been harder to get overspray there than not! However the overspray came off fairly easily after a good scrubbing.

First the plastic ducts must be refitted into the slots in the metal frame, before bonding the vinyl dash top to the metal frame using high temperature contact adhesive. Once glued in place the edges were softened using a heat gun which allowed them to be moulded to the shape of the frame before being glued to the underside. The final tasks were cutting slots in the vinyl for the air vents before refitting the surrounds and riveting the map bulb holder back in place.

Map light bulb holder

The vinyl only needed cutting at the dashtop ends to enable it to follow the curvature of the dash

Heat can be used to make the vinyl more pliable so it can be wrapped around the edges

One of the popular upgrades many owners are making is to improve the dash lighting by replacing the incandescent bulbs with LED strips. The backlighting of the gauges and the map lighting were fairly poor at best and the bulbs also generated a reasonable amount of heat. Therefore my next task is to install white LED strips to replace the map light and install coloured LED strips in the gauges.

Completed dashtop

Air vent surrounds refitted