Jun 152014

Before the headlights can be fitted, the bonnet electrics need to be completed while there’s still access.

The addition of headlamp relays had been made and so all that remained was to run the bonnet loom from the 10-way connector mounted behind the LH headlamp ‘sugar scoop’ to a 5-way connector behind the RH ‘sugar scoop’.

A small square bracket should secure the 5-way connector and is located on two studs welded to the bonnet. However the stud centre-to-centre spacing was 3/16″ wider than that of the bracket and the holes in the bracket were too small. Yet more cursing of repro parts!

My initial thought was the bracket was incorrect but that wasn’t the case. The problem was the stud spacing on the bonnet manufactured by the Jaguar Daimler Heritage Trust. It’s a bit worrying if they can’t even get their own bonnets right!

So the fitting of the front indicators and headlamps was delayed until I was able to fabricate a new bracket.

In the meantime I set about the relatively simple task of building up the headlamps in the sugar scoops. The original bowls were on the cusp of being salvageable but, for the relatively small cost, I opted to fit new ones. The first two sets of bowls supplied by SNG Barratt were wrong – the first didn’t have a spring attachment and the holes in the second didn’t align with the holes in the scoops. How hard can this be?

The third set didn’t fit either but the ‘only’ differences appeared to be additional brass fittings on the rim of the bowl and a slightly different location of the lug for the retaining spring. Enough was enough, I decided to use these bowls and removed the offending brass attachments with a Dremel.

(Once the parts are correct) There isn’t anything difficult fitting the headlamp components and everything is self-explanatory.

Spire nuts fitted to secure the bowls Then the rubber gasket Orientation of headlamp bowl

With the bowls in place, the headlight seating rim can be fitted. The rim is attached to the bowl by a retaining spring and two trimming screws. As their name suggests, the latter are adjusted to alter the headlight alignment; one vertically and the other horizontally.

Note: the photos below were taken before I’d realised the bowl, and therefore the adjustable seating rim, needed to be rotated anticlockwise by 90 degrees. The trimming screw to adjust the horizontal alignment needs to be on the offside of each lamp for right hand drive cars.

Next the headlamp seating rim Headlight alignment adjusting screw

Kits containing all the components used for the headlamps alignment are available. However the lugs in the new bowls, to attach the spring, were right at the base of the bowl and noticeably shorter. The replacement spring would not reach the headlamp seating rim. Therefore progressively longer springs had to be tried until one fitted sufficiently well and with enough oomph to handle the likely forces due to the weight of the headlamp.

Standard short spring The numerous springs tested
Finally one fitted! Almost there ….

It is then simply a matter of connecting the lamp and securing it with the retaining ring. Protrusions on the circumference of the headlamp align with depressions in the seating rim ensure the headlamp will always be orientated correctly.

All the electrical connections within the bonnet were given yet another final connectivity check (paranoia – moi?!?) as there’s no access once the sugar scoops are in place. The bullet connectors were also treated to a good coating of Vaseline to help delay any corrosion.

Fixing the sugar scoops
The sugar scoops are fixed to the bonnet by special rivets, which are essentially a standard rivet with an aluminium cup under the head. The cups provide a method for mounting chrome finishing beading, which clips on to the cups to improve the aesthetics by hiding the rivet heads.

A spacer washer is also fitted under each of the rivet heads to raise the cup away from the bodywork to allow a rubber strip to sit under the chrome finishing beading.

Originally a single washer was used although others on the E-Type forum have reported needing two washers to get the trim to attach. I guess this will just depend on the relative thickness of the replacement washers and rubber strip.

They also confirmed that the rubber strip originally had holes punched into it, which allows the rivets and spacer washers pass through it in order to sit flush against the bodywork. I had incorrectly assumed the rubber strip also formed part of the rivet ‘sandwich’.

Another suggestion was to Waxoyl all the mating surfaces prior to riveting. I still needed to Waxoyl the bonnet gaps along the front wings before fitting the fitting the chrome beading. So I decided to get this messy job out of the way in one hit and, while I was there, give the areas behind the sugar scoops another thick coating for good measure!

Waxoyling the bonnet-wing gap Rears of sugar scoops 2nd coating for enclosed area

The bonnet gaps for the beading were taped above and below in a futile attempt to avoid a major clean up afterwards. This time the Waxoyl container was sat in a bath of boiling water so it became more a job of pouring on rather than brushing on! The bonnet gaps are now well and truly filled with Waxoyl. Although I might come to regret this if (read when!) it starts to melt due to the heat of the engine!

Position of 5-way connector bracket Masking fit for a rivet!

The paintwork surrounding the sugar scoop area was given the usual riveting protection, a few layers of 3M masking tape, to avoid any damage when the pin snaps off. My plan was initially to use one washer under the rivet heads, as listed in the parts manual. If it was too difficult to fit the chrome finishers I’d have to drill out the rivets and re-do using a second washer. So additional rivets had been ordered just in case.

It was just as well spares had been ordered, as I was soon drilling out all the newly attached rivets to re-do it. Although not to fit additional spacers! I’d been on a riveting roll …. and had been a tad overzealous in their application. The clip to hide the joint between the two chrome finishing strips is held in place by a self-tapping screw. A self-tapping screw that requires a rivet sized hole … well, one that was now occupied by a rivet! What a clot!

Still blissfully unaware of my error! Eyebrow fitting needs the bowl out Dooh! ….a rivet too far!

I only noticed my error as I was standing back admiring how well I’d managed to get the rubber and chrome strips to fit. To make matters worse, somehow the offending rivet had ballooned on both sides of the body panel and couldn’t be pushed through. It required the whole scoop to be removed to sort it out.

Soon after, I also realised that I’d been a bit premature fitting the headlamp bowls and fittings. The front of the chrome ‘eyebrow’ is fixed directly to the scoop by two self-tappers, behind the headlamp bowl and rubber gasket. As it was a new bonnet, the holes for the screws hadn’t been drilled and so all the lamp fittings had to be removed to gain access.

Let’s have another go! Punching holes in the rubber strip

The scoop was re-riveted to the bonnet for round 2! The single piece rubber strip runs around the edge of the scoop with its ends tucking under the ‘eyebrow’. The holes for the rivets had been created by using a length of stainless steel pipe with a diameter marginally larger than the spacer washer. The thickness of the end wall was ground down to create a sharper edge so it could be used as a punch.

The original rubber strips were shaped so there were different part numbers for each scoop. Unfortunately the replacement rubber comes in straight lengths so it tends to ruffle up as it’s positioned around the curvature of the scoop. It’s not much of an issue apart from around the tip of the scoop, where the curvature is tightest. A heat gun helped to persuade it into shape but I cheated by cutting out a small wedge on the inside edge where a hole had been punched and superglued it back together.

I’m sure there are many methods to fit the bonnet chrome but the one that worked for me was:

  • Position the ‘eyebrow’ until it is almost fully home (around 1cm proud of the front wing joint)
  • Hook the rubber strip over the rivet heads and feed under the ‘eyebrow’
  • Slide, rather than clip, the chrome beading onto the 2nd from top rivet head
  • Keep sliding it up on to the top rivet head and then on, until its end is just under the eyebrow. The rubber strip protects the paintwork but care was needed to ensure, if it did suddenly come off the rivet head, it wouldn’t gouge into the paintwork!
  • For the remaining rivet heads: the beading has sufficient flex to allow it to be twisted so it fits fully over one side of the rivet head, before pressing it until it clips over the other side
  • The front of the eyebrow could then be pressed down firmly to spot the correct positions for fitting the self tappers.
Slight ruffling wasn’t an issue But surgery was needed around the tip Re-chroming had distorted the beading

My intention was to fit the long bonnet beading with about 3/4″ extending under the end of the eyebrows. Obviously this required the beading to be fitted before the completion of the headlamps. The only issue was ensuring the brass clips to secure it were positioned away from the bolts clamping the wings to the centre bonnet panel. The gap between the bonnet panels had to be ease open for some of the clips to allow them to slide through.

Easing apart the beading
gap from below
Pressing the beading home
… v carefully!
Rod inserted into beading
to stop it lifting
Fitting the bonnet beading: access from below was needed to ease apart the flanges of the centre bonnet section and the front wing

However extending the beading stopped the eyebrow from being pushed flush against the bonnet. In the end I settled for a butt joint and cut off the extra 3/4″ but adopted another suggestion from the forum: slide a 2-3″ length of small rod into the centre of the beading, leaving of half its length protruding. This engages under the end of the eyebrow but doesn’t stop it being pressed against the bodywork. The rod should stop the end of the bonnet beading being caught and bend out of shape.

Fitting the scoops was a really fiddly job as I’d expected and, with the various problems encountered, took almost an entire weekend to fit the first headlamp (which was the easier of the two!).

I’m still struggling with the second headlamp. The main problems were the dire positioning and alignment of the rivet holes in the scoop compared to the bonnet aperture and the angle of the flange on the scoop.

A shocking gap using the pre-drilled holes The marker pen shows the how far out they were
(and it’s the further of the two marker points!)

The front of the driver’s side scoop was 5-6mm away from the bonnet panel using the pre-drilled holes. A gap that couldn’t be closed by applying pressure as the underside of the scoop was hard against the bonnet aperture. The only solution was to drill a second set of holes. Also the flange angle down one side was such that it couldn’t fit flush against the bonnet panel. The knock on effect was the ‘special’ rivets weren’t long enough to reach through both panels and longer rivets had to be ordered.

The second headlamp was successfully riveted into position using the newly drilled holes. I was both pleased and relieved and had expected that that would be the end of my headlamp woes. Far from it! I couldn’t get the chrome beading trim on with just a single spacer washer. Reluctantly I decided to drill out rivets and start again using 2 washers per rivet.

Again the rivets wouldn’t push through once the head had been drilled off. They felt as though they were embedding themselves into the lower panel.

The headlamp was subsequently re-attached using 2 spacers washers under the head AND a washer under the rear. This was to give the blind part of the rivet something firm to compress against so, fingers crossed, they’ll be easier to drill out in future!

The problem wasn’t the number of spacer washers but the shape of the beading trim. I’m certain they had been distorted during the re-chroming as polishing puts a fair amount of heat into quite thin material. It’s not easy to fettle their shape to fit once the chrome plating is on. They can be rotationally flexed but not re-bent to match the scoop contours.

The chrome beading fitted poorly with noticeable gaps caused by forcing the beading to clip onto some of the rivet heads. In fact the addition of two spacers made these gaps worse, allowing the rubber strip to move underneath. This time I’d spent a further weekend ‘not fitting a headlamp’! Rather disheartened, I’ve given up for now and will have another stab once my enthusiasm is restored!

At least one headlamp is in!

One they are completed, it will be a job I hope not to have to repeat and I’m now questioning the wisdom of the positioning of the inline fuses for the headlamp relay modification!

May 132014

Fortunately it was possible to re-chrome the sidelight/indicators. However to do so ACF Howell had to remove the bulb holders and reflectors, neither of which faired out too well during the removal process.

The other problem was that one of the lens screws had sheared and I’d forgotten to remove the remaining section prior to sending everything to be re-chromed. So not only was it corroded in place but it was now sealed with a layer each of copper, nickel and chrome.

It was carefully drilled to break the plated layers and soaked in penetrating oil for weeks before attempting to remove it using a left handed drill bit. It wouldn’t budge so there was no alternative except to drill it out and re-tap.

Fine in theory but the lens screws are an odd size (approx. 0.130″ diameter and 32tpi). None of the local machine shops had a suitable tap and various internet searched failed to find one too. The closest tap was 6-32 at 0.136″ diameter which will now require a different size screw.

The next challenge was to find some new bulb holders which also proved to be very elusive. I finally managed to find some at the Stoneleigh spares day on a stall offering headlight re-silvering for very old classics.

The side lights require a bulb holder to fit a 5/8″ diameter hole while the indicator is for larger a 7/8″ hole. Once in place, the bulb holder edge is peened over to secure it in position.

The metal body of the light unit acts as the earth connection for the bulbs. A good earth would probably be achieved just by the four mounting screws, as the whole of the lower bonnet panel is earthed directly from the bonnet plug. However a brass bullet connector ring is also fitted to the indicator bulb holder and wired to the earth running in the loom.

Components for front lights Holder pressed in tightly Earth bullet connector

The indicator bulb holder is much harder to fit than the side light as the holder edge needs to be peened over tightly so the earth connector at the rear and the reflector inside aren’t wobbly. I rigged up a method of clamping the rear which took care of the earth connector. The reflector could then be held hard against the unit while a metal rod was tapped to peen over the edge of the holder. An additional pair of hands would have been very useful!

The disadvantage of someone else dismantling the units is not being able to recall what was removed. As a result, I’d overlooked the re-fitting of the internal shield. Fortunately it’s simply secured by two 2.4mm rivets and once in place, creates separate indicator and side lamp compartments.

Sprung bulb seats fitted Almost forgot the internal shield Shield riveted in place

I thought the rebuilding of the units would be fairly simple rather than the palaver it turned out to be to get replacement parts. It took three attempts to get the lens seating foam from SNG Barratt. Each time they were ordered I received the gasket for the side reflectors only found on US cars. Eventually we found out that my copy of their catalogue had a typo!

Fortunately the rubber boots fitted over the rear of the holders were in good condition as they’re not available any more. I also had to remake all the sprung bulb seat connectors as the wires were way too short.

Still that would be the least of my worries …. all the chrome units had been sent to Hutsons specifically so they could be trial fitted and the body work adjusted prior to painting. Both indicators were miles out and clearly hadn’t be fitted before the bodyshell was painted and the lights sent on to be re-chromed. Really not impressed.

It appears that the holes for the indicator units in new bonnet panels are approximate and need to be fettled quite extensively. I therefore had no alternative – I’d have to take a grinder to my painted bonnet to open out and reshape the hole. The accuracy of the bonnet panel is also amiss as I’m certain the indicator inserts haven’t been welded into the bonnet squarely.

The other odd thing is that only two of the four mounting points have nuts welded to the bonnet panel. Once the headlights are installed there won’t be access to the rear of the units. So I’ve had to fit some spire nuts in these holes.

The mounting holes in the indicator units also had to be enlarged to try to overcome the alignment problem. Even so, I’ve not been able to mount the units a horizontal as I would like. It’s something that will bug me now!

Complete unit ready for fitting Much fettling was needed to fit One down, one to go!
May 082014

The breakdown of the re-chroming quote received from ACF Howell simply had ‘RIP’ written in place of a cost for the rear light clusters …. and I had thought they looked in better shape than the front lights, which they were able to re-chrome! I was therefore slightly weary of picking up some second hand ones at the Stoneleigh spares day, just in case they too were later found to be beyond help.

The general view is that the aesthetics of the S2 suffered with the tightening of US health and safety regulations, by the introduction of the rear wrap-around bumper and rather slab rear-end look. They have a lot to answer for!!

Peter Crespin, an author on Jaguars, had ‘tidied’ up the rear of an S2 based around using the rear light clusters from a Lotus Elan 2+2. These have a reverse light incorporated into the unit thus removing the need for the separate reverse lights either side of the square number plate.

Rear of Standard S2 Rear using Elan rear lights
Images courtesy of E-Type forum

The number plate mount and aluminium number plate finisher are also dropped enabling the more traditional oblong number plate to be attached directly to the body. This in turn enables straight exhaust resonators to be used rather than the splayed ones introduced with the S2.

While I much prefer this uncluttered look, I still wanted to be able to revert to standard relatively easily/cheaply. The main expense is the rear light clusters so the decision was whether to buy the correct ones or the Elan 2+2 units. The problem would be that having separate reverse lights might obscure the ends of the number plate.

A quick call to Framptons confirmed that they would be able to produce an oblong number plate which would fit inside the original reverse lights (just!), because my registration number only had two digits and one of these was a ‘1’.

Decision made. I would stick with the correct light units and the reverse lights but would swap to an oblong number plate and straight exhaust resonators.

One of the rear housings for the light units had been pushed in and badly twisted. Presumably when it sustained the rear bumper damage. Fortunately I managed to find a pair of second hand ones although their hand-painted finish looked as though the previous owner had had a fight with the paint brush …. and lost!! Nothing some shot blasting couldn’t cure.

The replacement housings may well have been from another Jaguar model because they didn’t have the retaining nut on the rear face and new ones had to be welded in place. The paint had been masking some quite bad pitting, so the housings were left to soak in phosphoric acid for a while to convert any remaining traces of rust before being filled and painted with Epoxy Mastic 121, along with the final few unpainted parts.

I also decided to give the inside of the housings and the back of the light clusters a number of coats of Dinitrol hard wax in an attempt to delay the onset of the same corrosion problems in future. Several thick coats of Dinitrol were applied – initially it looks a mess but dries overnight to a thinner, more uniform finish.

The parts diagram indicates that there should also be a foam gasket (item 5) sealing the aperture where the lamp cables exit the rear housing. Despite numerous searches, I couldn’t find anyone who supplied them so I knocked up some gaskets using some Dynaliner. The foam is closed cell so shouldn’t absorb water which would making things worse rather than better.

First the light housing must be attached to the body. The inboard side with two 3/16″ setscrews, one securing the light’s earth connection, and the outboard side with two 3/16″ self tappers into a square nylon span-in nuts.

However I found that once the housings had been fitted, it wasn’t possible to fit the bolts securing the rear bumpers. Therefore these bolts need to be screwed in place beforehand.

The bumper brackets slide onto these bolt so it’s not necessary to fit the rear bumper first. Although access to the bolts starts to become limits once the light units have been mounted to the housings.

I’ve found Bresco very useful for supplying many of the odd trim fittings and they supply a pack of the Nylon snap-in nut for 17/64″ square hole (code 80200P), which is sufficient for the rear lights, the reverse lights, the padded door brackets and the brackets for the internal door lever operating the door locks.

Oddly the inner two bolt holes of the reproduction light clusters were tapped. This didn’t make sense to me as it would stop the bolts providing a clamping force on the clusters against the housing. Once the screw had engaged with the thread in both the light cluster and housing, they would move in unison along the screw thread and would not be drawn together.

In the end I gave up and drilled the bolt holes to remove the screw thread to obtain a good seal on the rubber gasket between the two.

Finally the reverse lights and number plate light were screwed in place to complete the rear lighting.

Jan 162014

There’s been a dramatic drop off in progress with the restoration in the last month or so. Partly due to the horrible winter weather, resulting in an apathy to venture out into a cold, dark garage!

In the meantime, attention has turned to sorting out bits and pieces that could be worked on indoors, although it gives an excuse for the gratuitous inclusion of some photos of the main reason for the lack of headway … a diving trip in warmer climes!

Progress is delayed due to a spot of diving …. with some immature 6m Whale Sharks

Back to the plot …..

Several years ago I’d come across an owner’s restoration of a ’63 OTS where they had redesigned the looms to their own specification, incorporating relays for the headlight circuits. The addition of relays made good sense, as they remove the main current bearing wires from behind the dash area, but I wasn’t convinced about having bespoke wiring looms made.

Deviating too far from the original wiring looms would mean that, if I subsequently encountered electrical problems, I’d be on my own as it would be hard seeking accurate advice from fellow owners. There was also the fear of overlooking a critical wire when the looms were made up or getting the length of one of the wires slightly wrong. It would be an expensive mistake to fix!

So the idea of adding relays was shelved and a new set of standard looms purchased. Fortunately this proved to be the right course of action. At the time, I hadn’t spotted the wiring diagrams I was using weren’t correct for my car. They didn’t have the changes in circuitry covering the introduction of the ballast resistor into the ignition circuit.

Rather timely, as I was starting to look at the lighting and bonnet electrics, an excellent write up of a headlamp relay modification was covered on the E-Type forum. The installation is very discreet with the relays being mounted out of sight behind the LHS ‘sugar scoop’. The only visible sign of the modification is the main power feed, taken from the alternator B+ terminal.

The downside of tucking the modifications within the bonnet is that it will be much trickier to maintain if something fails. The headlight bowls and possibly the indicators would need to be removed to gain access.

I had some spare repro 6RA relays so all I needed to purchase were some suitable coloured & rated wires and two in-line fuses. I also decided to install Halogen headlights at the same time.

The circuit diagram shows the planned wiring modifications, with the additional components labelled in red.

There are two spare terminals in the 8-pin bonnet plug, which were originally for the bonnet mounted horns found in the earlier cars and, I believe, the provision for optional extra spot/driving lights.

One of these spare terminals was used for the single high load wire running from the alternator B+ terminal to the 10-way connector in the bonnet. (It’s much easier to take a supply from the B+ post rather than travelling all the way back to the battery.)

I managed to feed the wire into the PVC sleeving to the bonnet plug so the only visible sign of the installation in the engine bay is a single sheathed wire running from the alternator to the bottom left of the picture frame, which has been cable tied to the existing loom.

From the bonnet connector, this feed splits in two to provide the 12v supplies to the dipped and the main beam relays. The relays have a double spaded terminal for the switched output, so the wires to the left and right hand lamps were connected directly to the relay.

Wire and fuse ratings
The Halogen dual filament bulbs are rated as 55W/65W at 12v so the dipped and main beams for each bulb will draw around 5.5 amps and 6.5 amps respectively (assuming a charging battery voltage of 14.3V).

Normally only one set of the filaments are on at any one time. However the worst case is when the main beam is ‘flashed’ while the dipped beams are on. Even though this should only be for short periods of time, I thought it prudent to assume the maximum current required for both headlamps would be 24 amps (2 dipped @ 5.5A each and 2 main beam @ 6.5A each).

Therefore 44/0.30 cable, rated at 25 amps, has been used for the supply from the alternator rather than the 28/0.30 cable suggested in the forum write up. Inline fuses have been used for the connections to the two relays. Their wiring is rated at 30 amps which is more than enough, although they have both been fitted with 15 amp fuses as the expected loads are 11 amps dipped and 13 amps main beam.

Using two fuses should ensure that a blown fuse won’t result in the complete loss of lighting!

The original wiring for the dipped beam (Blue/Red) and main beam (Blue/White) will now just be used to switch the relays. The coil resistance for the 6RA relays was measured at approximately 83 ohms so the switching wires will now only need to carry around 0.17 amps. Therefore the dash mounted fuses 1 & 2 have also been replaced, by 0.25 amp fuses.

As the whole bonnet area had been coated in copious amounts of Waxoyl, I also fitted some PVC sheathing to the bonnet loom in an attempt to keep it clean. I just need to tidy up the cabling when the headlamps are fitted.